
Interactive Synthesis using Free-Form Queries
Tihomir Gvero and Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Email: firstname.lastname@epfl.ch

Abstract—We present a new code assistance tool for integrated
development environments. Our system accepts free-form queries
allowing a mixture of English and Java as an input, and produces
Java code fragments that take the query into account and
respect syntax, types, and scoping rules of Java as well as
statistical usage patterns. The returned results need not have
the structure of any previously seen code fragment. As part
of our system we have constructed a probabilistic context free
grammar for Java constructs and library invocations, as well as
an algorithm that uses a customized natural language processing
tool chain to extract information from free-form text queries. The
evaluation results show that our technique can tolerate much of
the flexibility present in natural language, and can also be used to
repair incorrect Java expressions that contain useful information
about the developer’s intent. Our demo video is available at
http://youtu.be/tx4-XgAZkKU

I. INTRODUCTION

Application programming interfaces (APIs) are becoming
more and more complex, presenting a bottleneck when solving
simple tasks, especially for new developers. APIs contain
many types and declarations, so it is difficult to know how to
combine them to achieve a task of interest. Instead of focusing
on more creative aspects of the development, a developer
ends up spending a lot of time trying to understand informal
documentation or adapt the API documentation examples.
Integrated development environments (IDEs) help in this task
by listing declarations that belong to a given type, but leave it
to the developer to decide how to combine the declarations.

On the other hand, on-line repository host services such as
GitHub [1], BitBucket [2] and SourceForge [3] are becoming
more and more popular, hosting a large number of freely
accessible projects. Such repositories are an excellent sources
of code examples that developers can use to learn API usage.
Moreover, their large size and variety suggests that they
can be used by machine learning techniques to create more
sophisticated IDE support. A natural first step is to perform
code search [4], though this still leaves the user with the task
of understanding the context and adapting it to their needs.
Several researchers have pursued the problem of generalizing
from such examples in repositories, combining non-trivial
program analysis and machine learning techniques [5].

In this paper, we present a new approach that synthesizes
code appropriate for a given program point, guided by hints
given in free-form text. We have implemented our approach
in a system anyCode, and have found it to be very useful
in our experience (see our technical report [6, Section 4]).
Our approach builds a model of the Java language based on
corpus of code in repositories, and adapts the model to a given

text input. In that sense, our approach combines some of the
advantages of statistical programming language models [5] but
also of natural language processing of the input containing
English phrases, previously done for restricted APIs [7].

Our approach builds on our past experience with the InSynth
tool [8], in which a user only indicates the desired API
type; the tool InSynth then generates ranked expressions of
a given type. With our new tool, anyCode, the input can
be interpreted as a result type, but, more generally, it can
be any text, referring to any part of an expected expression.
We find this interface more convenient and expressive than in
InSynth. Furthermore, InSynth uses only the unigram model
[9, Chapter 4], which assigns a probability to a declaration
based on its call frequency in a corpus. InSynth uses the
model to synthesize and rank expressions. In anyCode, besides
unigram, we use the more sophisticated probabilistic context
free grammar (PCFG) model [9, Chapter 14], to synthesize and
rank the expressions. We perform synthesis in three phases:
(1) we use natural language processing (NLP) tools [10]–
[12] to structure the input text and split the text input into
chunks of words based on their relationships in the sentence
parse tree; (2) we use the structured text and unigram model
to select a set of most likely API declarations, using a set
of scoring metrics and the Hungarian method [13] to solve
the resulting assignment problem [14]; (3) we finally use the
selected declarations, PCFG and unigram model to unfold the
declaration arguments. The result is a list of ranked (partial)
expressions, which anyCode offers to the developer using the
familiar code completion interface of Eclipse.

By introducing a textual input interface, we aim to automat-
ically reduce the gap between a natural and a programming
language. anyCode allows the developer to formulate a query
using a mixture of English and code fragments. anyCode takes
into account English grammar when processing input text.
To improve the input flexibility and expressiveness we also
consider word synonyms and other related words (hypernyms
and hyponyms), and build a related word map based on Word-
Net [15], a large lexical database of English. The techniques
we implement in anyCode are inspired by stochastic machine
translation. However, we had to overcome the lack of a parallel
corpus relating English and Java, as well as the gap between
an informal medium such as English and the rigorous syntax
and type rules of a programming language such as Java.

We aim to relieve the user of the strict structure of a
programming language when describing their intention. From
our perspective, IDE tools should allow a user to gloss over
aspects such as the number and the order of arguments in



Fig. 1. After the user inserts text input, anyCode suggests five highest-ranked
well-typed expressions that it synthesized for this input.

method calls, or parenthesis usage. Instead, the developers
should focus more on solving important higher-level software
architecture and decomposition problems. Finally, we also
hope to lower the entry for those who are learning to program,
for whom syntax is often one of the first obstacles. To achieve
this, we find that a short text input that approximately describes
the structure of the desired expression is the most convenient.
To make the input useful for programming, we also allow a
user to explicitly write literals and local variable names in
input. Using such input, anyCode manages to synthesize valid
Java code fragments. It can do that because it does not impose
any strict requirement on the input: it has the ability to generate
likely expressions according to the Java language model, and
uses as much of the information from the input as it can extract
to steer the generation towards developer’s intention.

II. EXAMPLES

In this section we use four examples to demonstrate main
functionalities of anyCode.

1) Making a File Backup. Suppose that a user wants to
implement a method that backs up the content of a file. The
method should take a file name as a parameter and copy
the content of the file to a new file with an appropriately
modified name. First, a user writes an incomplete code that
takes the parameter fname with the file name, as shown in
Figure 1. She also creates a variable bname that stores the
backup file name, that is obtained by adding ‘‘.bak’’ extension
to bname. In the next line, instead of writing the code, the
user can invoke anyCode. When anyCode is invoked, a pop-
up text field appears where a user can insert the text, such
as ’copy file fname to bname’ that specifies her desire to copy
the file content. anyCode automatically extracts the program
context from Eclipse and identifies words fname and bname
in the input as values referring to a parameter and a local

variable. anyCode then uses this information to generate and
present several ranked expressions to the user. When the user
makes her choice, the tool inserts the chosen expression at
the invocation point. In this example, anyCode works for less
than 50 milliseconds and then presents five solutions of which
the first one copies the file fname content to a file with name
bname: FileUtils.copyFile(new File(fname), new File(bname)). This is
a valid solution; it uses the method FileUtils.copyFile from the
popular “Commons IO” library.

2) Invoking the Class Loader. Suppose that a user intends
to load a class with a name ‘‘MyClass.class’’. She invokes the
tool with the free-form input ’load class ‘‘MyClass.class’’’ In less
than 40 milliseconds, anyCode automatically synthesizes and
suggests the following (partial) expressions:

1 Thread.currentThread().getContextClassLoader()
.loadClass(‘‘MyClass.class’’).getClass()

2 Thread.currentThread().getContextClassLoader()
.loadClass(‘‘MyClass.class’’)

3 Thread.currentThread().getContextClassLoader().loadClass(〈arg〉)
.getClass()

4 ‘‘MyClass.class’’.getClass()
5 Thread.currentThread().getContextClassLoader().loadClass(〈arg〉)

The second suggestion turns out to be the desired one. Note
that the suggestions 1, 2, and 4 represent complete expressions.
On the other hand, suggestions 3 and 5 represent templates that
include the symbol 〈arg〉 that marks the places where local
variables are often used. The main reason why we present
templates is that a user often inserts incomplete input and
for an incomplete input the best solution is an incomplete
output, i.e., a template. If we have insisted only on completed
expressions, we would miss many interesting solutions that
are more convenient for incomplete inputs.

Note that the complete expressions 1 and 2 include declara-
tions whose selection and integration does not directly depend
on the textual input. For instance, method loadClass contains
both input words load and class, whereas currentThread does not.
To reach the currentThread from loadClass we use probabilistic
language model for Java and its API calls, derived from a
corpus of code. Without such a model we would not be able
to construct complex expressions such as the above one.

3) Creating a Temporary File. In the third example
we demonstrate the use of semantically related words. For
instance, if a user wants to discover templates that make a new
file, she may insert ’make file’. In a less than 80 milliseconds,
anyCode generates the following output:

1 new File(〈arg〉).createNewFile()
2 new File(〈arg〉).isFile()
3 new File(〈arg〉)
4 new FileInputStream(〈arg〉)
5 new FileOutputStream(〈arg〉)

Note that word make does not appear among the solutions,
because API designers used the word create. anyCode succeeds
in finding the solution because it considers, in addition to the
words such as make appearing in the input, its related words,
which includes create. anyCode uses a custom related-word
map to compute the relevant words. We built this map by
automatically processing and adapting WordNet, a large lexical
semantic network of English words.

4) Reading from a File. In the final example we show that
our input interface may also accept an approximate expression.
For instance, if a user attempts to write an expression that reads
the file, in the first iteration she may write the expression ’
readFile(‘‘text.txt’’,‘‘UTF−8’’)’. Unfortunately, this expression is not
well-typed according to common Java APIs. Nevertheless, if
anyCode takes such a broken expression, it pulls it apart and



recomposes it into a correct one, suggesting (again in less than
40 milliseconds) the following solutions:

1 FileUtils.readFileToString(new File(‘‘text.txt’’))
2 FileUtils.readFileToString(new File(‘‘UTF−8’’))
3 FileUtils.readFileToString(〈arg〉)
4 FileUtils.readFileToString(new File(〈arg〉))
5 FileUtils.readFileToString(new File(‘‘text.txt’’), ‘‘UTF−8’’)

anyCode first transforms the input by ignoring the language
specific symbols (e.g., parenthesis and commas). It then slices
complex identifiers, so called k-words, into single words. Here,
readFile is a 2-word that gets sliced into read and file. Despite
the loss of some structure in treating the input, our language
model gives us the power to recover meaningful expressions
from such an input. This shows that anyCode can be used
as a simple expression repair system. The desired solution
is ranked fifth because it uses a version of readFileToString
method with two arguments, which appears less frequently in
the corpus than the simpler versions of the method.

III. SYSTEM OVERVIEW

In this section we give a high-level picture of the main
components of anyCode. Input to our anyCode consists of
i) a textual description, explicitly typed by the developer
and ii) a partial Java program with a position of the cursor,
which anyCode extracts automatically from the Eclipse IDE.
anyCode uses the input to generate, rank and present (possibly
partial) expressions to the user. As Figure 2 shows, the key
components of anyCode are the text parser, the declaration
search engine, and the expression synthesizer. The method
getExpressions performs these steps, as outlined in Figure 3.

Fig. 2. anyCode system overview. The offline components run only once and
for all. The online components run as part of the Eclipse plugin.

The parsing identifies structure of the input text using a
set of natural language processing tools. anyCode uses the
structure to group input words into WordGroups. The intuition
is that the input text corresponds to several declarations, and
grouping according to the rules of English helps to identify
these declarations. Moreover, the system uses a map of related
words to complete the words given in the input with some
of the related meanings computed from a modified version
of WordNet [15]. To complement natural language input, the
system uses program context from the IDE to mark local
variables and literals in the input text.

Next, the declaration search engine uses WordGroups, to
find a subset of API declarations that are most likely to

getExpressions(text, context, NBestExprs):
// Text Parsing
(WordGroups, Literals, Locals)← parse(text, context)
// Declaration Search
DeclGroups← declSearch(WordGroups, API, Unigram)
// Synthesis
ExPCFG← extend(PCFG, Literals, Locals)
Exprs← synth(DeclGroups, ExPCFG , NSteps)
return keepBest(Exprs, NBestExprs)

Fig. 3. The high level description of online portion of anyCode.

form the final expressions. The system tries to match word
groups against declarations in our API collection. To perform
matching, the system extracts a list of words from declarations
and matches them against the words in the groups. Based
on the number of words that match the system estimates
the matching score. Together with the declaration Unigram

[9, Chapter 4] score it forms the final declaration score.
Finally, for each word group the system selects the top NBest

declarations with the highest final scores and puts them
in a declaration group. In summary, the method declSearch
transforms each word group into a declaration group. Our API
collection contains declarations we collect from several APIs.
It is organized as a word-declaration map that maps words to
declarations and precomputed to speed up the selection.

Finally, the synthesis uses declaration groups and a proba-
bilistic context free grammar (PCFG) model [9, Chapter 14]
to generate expression. The production rules of PCFG en-
code declaration compositions. ExPCFG consists of the initial
PCFG model, pre-extracted from a Java source code corpus
(including 14’500 projects from GitHub), and the extension,
production rules for literals and local variables, extracted from
the partial program. The method synth tries to unfold decla-
ration arguments following ExPCFG model, in NSteps. Given
a declaration, ExPCFG suggests declarations that should fill in
the argument places. The method synth also assigns scores to
the expressions, based on the ExPCFG and declarations scores.
It returns the best NBestExprs expressions.

IV. EVALUATION

We have evaluated our system on 45 examples. In our
technical report [6], Figure 2 shows for each example a free-
form query and the code that we expected to obtain in return.
The results show that anyCode can efficiently synthesize
the expressions in a small period of time (in less that 200
milliseconds). They also show that anyCode without the both
models generates only 6 expected expressions among the top
ten solutions. anyCode with unigram model generates 19 and
with both models generates all 45 expressions.

V. LIMITATIONS

The first limitation is related to our set of examples. While
fairly large by the standards of previous literature, it may not
be representative of general results. This limitation comes from
the two facts: (1) there is no standardized set of benchmarks



for the problem that we examine, and (2) we used the same
set of examples to configure and evaluate our system. The
primary purpose of the examples is to show that our tool is
able to produce a set of real-world examples when configured.
A parallel corpus with text as input and declarations (expres-
sions) as output would be ideal for configuring the parameters,
however no such corpus exists. Our attempt to create the
corpus from the code and its descriptive comments led to
irrelevant examples and the low quality corpus. The second
limitation is related to the complexity of the code snippets
we synthesize. It comes from the fact that we synthesize only
expressions, excluding local variable declarations and other
statements. We plan to improve anyCode and to overcome
these limitations in our future work.

VI. RELATED WORK

There are many tools that suggest code fragments [4],
[5], [16]–[20]. Prospector [21] uses a receiver type typein to
generate a chain of method calls that ends with a method
whose return type is equal to the desired type typeout. It ranks
the solution by the length, preferring the shorter ones. To fill in
the method arguments, and produce a complete expressions, a
user often needs to initiate multiple queries. Unlike Prospector,
anyCode uses statistics from the corpus to synthesize and
rank expressions and it requires a single invocation to produce
complete expressions.

There are also many tools that suggest snippets using
natural language input. SmartSynth [7] generates smartphone
automation scripts from natural language descriptions. Macho
[22] transforms natural language descriptions into a simple
programs using a natural language parser, a corpus and input-
output examples. Little and Miller [23] built a system that
translates keywords into a valid expression. NaturalJava [24]
allows a user to create and manipulate Java programs using
an NL input. SNIFF [25] uses natural language to search for
code examples. The tools [26], [27] search and synthesize code
fragments using input-output examples. Finally, the tool [28]
uses genetic programming approach with different degrees of
human guidance which includes names of library functions
and test cases. The tool grows a new functionality using
user’s suggestions and grafts it to the existing code. Unlike
mentioned tools, anyCode is the first tool that uses free-
form queries, and combines NL tools, PCFG and unigram
model to synthesize, repair and rank expressions. anyCode
can also synthesize previously unseen code fragments. It also
automatically infers the set of words that map to declaration
(components). Moreover, anyCode uses a sophisticated model
that maps input to declarations, resolves complex declaration
names and takes into account related words (e.g., synonyms).

VII. CONCLUSIONS

We presented anyCode, a synthesis tool that combines
unique flexibility in both its input, that may contain a mixture
of English and code fragments, and its output, that may include
combinations of declarations not encountered previously in the
corpus. Our experience with the tool, suggests that there is a

number of scenarios where such functionality can be useful
for the developer.

ACKNOWLEDGMENT

We thank Rastislav Bodik, Armando Solar-Lezama, Darko
Marinov and Ravichandhran Kandhadai Madhavan for the
valuable discussions and comments. This work is supported
by the ERC project “Implicit Programming”.

REFERENCES

[1] GitHub repository hosting service, https://github.com/.
[2] BitBucket repository hosting service, https://bitbucket.org/.
[3] SourceForge source code repository, http://sourceforge.net/.
[4] S. Thummalapenta and T. Xie, “PARSEWeb: a programmer assistant

for reusing open source code on the web,” in ASE, 2007.
[5] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with

statistical language models,” in PLDI, 2014, p. 44.
[6] T. Gvero and V. Kuncak, “On synthesizing code from free-form

queries,” EPFL, IC, Tech. Rep. EPFL-REPORT-201606, 2014.
[7] V. Le, S. Gulwani, and Z. Su, “Smartsynth: Synthesizing smartphone

automation scripts from natural language,” in MobiSys, 2013.
[8] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac, “Complete completion

using types and weights,” in PLDI, 2013, pp. 27–38.
[9] D. Jurafsky and J. H. Martin, Speech and Language Processing,

2nd ed. Prentice Hall, 2008.
[10] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and

D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL, 2014, pp. 55–60.

[11] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
typed dependency parses from phrase structure parses,” in LREC,
2006, pp. 449–454.

[12] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in
HLT-NAACL, 2003.

[13] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[14] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2009.

[15] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

[16] J. Galenson, P. Reames, R. Bodı́k, B. Hartmann, and K. Sen,
“Codehint: Dynamic and interactive synthesis of code snippets,” in
ICSE, 2014, pp. 653–663.

[17] N. Sahavechaphan and K. Claypool, “Xsnippet: mining for sample
code,” in OOPSLA, 2006.

[18] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in ICSE, 2005, pp. 117–125.

[19] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in ESEC/SIGSOFT FSE, 2009, pp.
213–222.

[20] http://www.eclipse.org/recommenders/.
[21] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:

helping to navigate the api jungle,” in PLDI, 2005.
[22] A. Cozzie and S. T. King, “Macho: Writing programs with natural

language and examples,” University of Illinois at Urbana-Champaign,
Tech. Rep., 2012.

[23] G. Little and R. C. Miller, “Keyword programming in Java,” in ASE,
2007, pp. 84–93.

[24] D. Price, E. Riloff, J. L. Zachary, and B. Harvey, “NaturalJava: A
natural language interface for programming in Java,” in IUI, 2000, pp.
207–211.

[25] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF: A search engine for
java using free-form queries,” in FASE, 2009, pp. 385–400.

[26] S. P. Reiss, “Semantics-based code search,” ser. ICSE ’09,
Washington, DC, USA, 2009, pp. 243–253.

[27] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for source
code,” ACM Trans. Softw. Eng. Methodol., vol. 23, pp. 26:1–26:45,
Jun. 2014.

[28] M. Harman, Y. Jia, and W. B. Langdon, “Babel pidgin: SBSE can
grow and graft entirely new functionality into a real world system,” in
SSBSE Challenge Track, 2014, pp. 247–252.


