
Synthesis of Fixed-Point Programs

Eva Darulova
EPFL

eva.darulova@epfl.ch

Viktor Kuncak
EPFL

viktor.kuncak@epfl.ch
Rupak Majumdar

MPI-SWS
rupak@mpi-sws.org

Indranil Saha
UCLA

indranil@cs.ucla.edu

ABSTRACT
Several problems in the implementations of control systems,
signal-processing systems, and scientific computing systems
reduce to compiling a polynomial expression over the re-
als into an imperative program using fixed-point arithmetic.
Fixed-point arithmetic only approximates real values, and
its operators do not have the fundamental properties of real
arithmetic, such as associativity. Consequently, a naive com-
pilation process can yield a program that significantly devi-
ates from the real polynomial, whereas a different order of
evaluation can result in a program that is close to the real
value on all inputs in its domain.

We present a compilation scheme for real-valued arith-
metic expressions to fixed-point arithmetic programs. Given
a real-valued polynomial expression t, we find an expression
t′ that is equivalent to t over the reals, but whose imple-
mentation as a series of fixed-point operations minimizes the
error between the fixed-point value and the value of t over
the space of all inputs. We show that the corresponding
decision problem, checking whether there is an implemen-
tation t′ of t whose error is less than a given constant, is
NP-hard. We then propose a solution technique based on
genetic programming. Our technique evaluates the fitness
of each candidate program using a static analysis based on
affine arithmetic. We show that our tool can significantly
reduce the error in the fixed-point implementation on a set
of linear control system benchmarks. For example, our tool
found implementations whose errors are only one half of the
errors in the original fixed-point expressions.

Categories and Subject Descriptors
D.2.10 [Software]: Software Engineering—Design-
Methodologies

Keywords
Fixed-point arithmetic, genetic programming, synthesis,
stochastic optimization, embedded control software

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT ’13 Montreal, Quebec, Canada
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Many algorithms in controls and signal processing are nat-

urally expressed using real arithmetic. A direct implemen-
tation of these algorithms using floating-point computation
requires either floating-point co-processors or software-based
emulation of floating-point capabilities. In many embedded
domains where controls and signal processing applications
are commonly used, the cost and power consumption of co-
processors or the inefficiency of software emulation are un-
acceptable. Thus, these algorithms are usually implemented
using a fixed-point equivalent of the original algorithm.

A lot of research has gone into providing semi-automated
compilation support from floating-point to fixed-point im-
plementations [8, 19, 17, 5, 22]. The primary concern in
these works has been bitwidth allocation: finding out the
number of bits to allocate for the integral and the fractional
parts of each real variable, so that the resulting implemen-
tation does not lose too much precision and the fixed-point
variables do not overflow. However, even with an optimal
bitwidth allocation, the precision of a fixed-point computa-
tion can depend on the order of evaluation of arithmetic op-
erations. Since fixed-point arithmetic is not associative, and
multiplication does not distribute over addition, the order
in which a real polynomial is evaluated can cause differences
in the error of the computation. These differences can in-
deed be significant: we show for one of our control system
benchmarks that the error between two possible evaluation
orders can be 2×: ranging from 0.00139 for the more precise
expression to 0.00311 for the least precise one. Since the
performance of controllers depends on the error introduced
in the controller output, this difference can be significant.
However, optimizing the error in the evaluation has received
much less attention in fixed-point compilation, and has been
limited to peephole optimizations (such as removing redun-
dant shift operations locally) [1].

We present a technique to synthesize a fixed-point imple-
mentation for a given real-valued specification. Our synthe-
sis method chooses the evaluation order of arithmetic op-
erations to minimize the computation error. Given a real-
valued arithmetic expression t, we aim to find a fixed-point
implementation t′, such that (1) the expressions t and t′

are equivalent when interpreted over reals, and (2) the error
between the real value and the fixed-point value computed
by t′ is minimal over all other fixed-point implementations
equivalent to t. We show that the decision problem of finding
an evaluation order that minimizes the error bound between
the specification and the implementation is NP-hard, so a
tractable complete search algorithm is unlikely.

Our technique is therefore based on a heuristic search im-
plemented through genetic programming (GP) [23]. We use
the mutation and crossover operations of genetic program-
ming to generate new sub-expressions. To evaluate the fit-
ness of a proposed solution, we use a static analysis based on
affine arithmetic to compute an upper bound on the error.
The objective of the search is to minimize the upper bound
computed by the static analysis.

While our static analysis only computes an upper bound,
we show, through extensive simulations, that the statically-
computed upper bounds are proportional to the actual errors
observed by simulations. We can thus use the less expensive
upper bounds to compare two expressions with respect to
precision.

We have implemented our technique and we have eval-
uated it on a set of control application benchmarks. Our
experiments demonstrate that our technique can find good
fixed-point implementations for linear controllers. For non-
linear computations we encounter limitations in using static
analysis based on affine-arithmetic, but our search method
works with any technique to estimate variable ranges, so fur-
ther improvements in this area can be incorporated into our
approach.

2. PRELIMINARIES
In this section we provide some background on the fixed-

point representation of real numbers and genetic program-
ming. As our benchmarks are mostly from the control en-
gineering domain, we also provide a brief introduction to
controller implementations.

In the rest of the paper, an expression denotes an arith-
metic expression generated by the following grammar:

t ::= c | x | t1 + t2 | t1 − t2 | t1 ∗ t2 | t1/t2

where c and x are rational constants and variables, respec-
tively.

2.1 Fixed-point Representation
In a fixed-point implementation of an expression, all the

variables and constants in the expression are assigned a
fixed-point representation. A fixed-point representation of a
real number is a triple 〈s, v, w〉 consisting of a sign bit indica-
tor s ∈ {1, 0} (for signed and unsigned), a length v ∈ N, and
a length of the fractional part w ∈ N. The length of the inte-
ger part is v−w−1. Intuitively, a real number is represented
using v bits, of which 1 bit is used to store if the number
is signed, and w bits are used to store the fractional part.
A given integer w and a positive integer v > 0 determine
a finite set FX(v, w) of representable rational numbers. A
variable with a fixed-point type is represented in a program
as a v-bit integer. The fixed-point implementation of an
expression then consists of assigning fixed-point representa-
tions to all input variables and intermediate results, i.e., to
each node in the abstract syntax tree (AST) of the expres-
sion. Arithmetic operations on fixed-point variables can be
implemented using integer arithmetic and bit-shifting; see,
e.g., [2] for details.

Worst-case error. Assume a fixed-point implementation
of an expression t. Given the values of the input variables,
we define the expression error as |tr − tf |, where tr is the
value of t computed when the expression is interpreted over
real numbers, and tf the value computed by the fixed-point

implementation. Given the intervals for input variables of
t, the worst-case error for a fixed-point implementation of
t is the maximum of the expression errors over all values
of input variables ranging over the fixed point representable
values from the given intervals.

Best fixed-point implementation. An expression over
real arithmetic may have different fixed-point implementa-
tions depending on how many bits are allocated to hold the
integer part and the fraction part of the variables and in-
termediate results. Allocating fewer bits than required to
hold the integer part may lead to overflow. On the other
hand, allocating more bits than necessary for the integral
part leaves fewer bits for the fractional part, causing the
quantization error to increase. When we compare the fixed-
point implementations of different expressions, we consider
their best possible implementation, which we define next.
Let us fix the length of every fixed-point variable in the im-
plementation of an expression. The implementation choice
is in choosing the number of bits to assign to the fractional
parts for each variable. Then we define the best fixed-point
implementation as follows.

Let v be the length of each fixed-point variable. For given
intervals for the variables and intermediate results, an im-
plementation I is called the best fixed-point implementation,
if for every input variable or intermediate result that takes
values from an interval [rmin, rmax], the fixed-point repre-
sentation is given by 〈1, v, w〉, where w = v − 1 − z and z,
the number of integral bits, is given by

z = dlog2(max(abs(rmin), abs(rmax)))e. (1)

For example, if the interval for a variable is [-35.55, 48.72],
the representation for the variable in the best 16-bit fixed-
point representation has z = 6 bits for the integer part, so
it is given by 〈1, 16, 9〉. For a constant C = 0.0864 where
z = −3, the representation is given by 〈1, 16, 18〉.

Note that the best fixpoint implementation depends on
intervals assigned to intermediate nodes. We say that
intervals are tight if the intervals for internal nodes are
as small as possible, given intervals for their operands.
For example, suppose we have assigned tight intervals S1

and S2 for sub-trees and that the operation is ∗. Let
S = {x1 ∗ x2 | x1 ∈ S1, x2 ∈ S2} and let z and w be
given by (1) taking rmin = inf(S) and rmax = sup(S).
We then require the interval assigned to the node to be
[roundF(rmin, v, w), roundF(rmax, v, w)] where roundF de-
notes the rounding used in fixed-point computations when
the representation is 〈1, v, w〉.

A property of the above definitions is that, in the special
case when the input intervals have lower bound equal to
upper bound and are representable as fixed point numbers,
then the tight intervals for intermediate nodes also have their
lower bounds equal to their upper bounds, and are equal to
the values of the sub-expression when evaluated in fixed-
point arithmetic.

2.2 Control Systems
We shall demonstrate our algorithms on controllers for

physical systems implemented in software. Physical systems
are typically modeled by differential equations:

d

dt
x = f(x, u), (2)

in which the curve x : R → Rn describes how the physical

quantities of interest change over time. At each time instant
t ∈ R, x(t) is a vector in Rn containing the values of physical
quantities such as positions, velocities, temperatures, pres-
sures, etc. A controller of the form u = k(x) is designed to
control the evolution of the physical variables, e.g., to en-
sure that the sequence x(t) converges to a reference point.
The controller u = k(x) is implemented as a program which
takes inputs x and produces outputs u by evaluating the
expression k.

In this paper we mostly focus on linear control systems.
To develop a linear control system, the behavior of the
physical system is first approximated by linear differential
equations, and then the differential equations are discretized
based on a suitably chosen sampling time. A discrete-time
linear time-invariant system is given by:{

x[r + 1] = Aτx[r] +Bτu[r],
y[r] = Cx[r],

(3)

where x ∈ Rn, u ∈ Rm and y ∈ Rp represent the state,
control input and output of the control system.

The controller requires the full state x to compute the
control signal. However, the full state of the plant is not
generally available to the controller, only output y of the
system is available. Hence, the control input

u[r] = −Kx̃[r] (4)

is computed based on an estimation x̃ of the state x. The
matrix K is called the feedback gain of the controller. The
estimation x̃ can be constructed using the observer dy-
namic [10]:

x̃[r + 1] = (Aτ −BτK − LC)x̃[r] + Ly[r]. (5)

The matrix L is called the gain of the observer.
Equation (5) together with Equation (4) provides the re-

alization of the controller.

2.3 Genetic Programming
Our algorithm uses genetic programming. Genetic algo-

rithms are heuristic search algorithms inspired by natural
evolution. A genetic algorithm is parameterized by a fitness
function to evaluate a candidate solution as well as operators
called mutation and crossover to generate new candidate so-
lutions from old ones. The algorithm maintains a population
of candidate solutions, and “evolves” the current population
in phases (called“generations”). An evolution step picks two
candidates from the current generation, and computes new
candidate solutions by applying the mutation and crossover
operations. The quality of the new solution is evaluated
by evaluating the fitness function, and the new solution is
added to the next generation if the fitness function assigns
a high score to it.

The candidate solutions are usually represented by strings.
Candidates for mutation and crossover can be selected for
example by tournament selection where a fixed number of
candidates is chosen at random and the one with the highest
fitness is selected as the final candidate.

Genetic programming [23] is a variant of a genetic algo-
rithm that performs the search over computer programs in-
stead of strings. Mutation and crossover operators are thus
defined on abstract syntax trees (ASTs).

3. EXAMPLE
We motivate the problem using a controller for a batch

reactor processor [24]. The computation of a state of the
controller is given by the following expression:

(−0.0078) ∗ st1 + 0.9052 ∗ st2 + (−0.0181) ∗ st3 +

(−0.0392) ∗ st4 + (−0.0003) ∗ y1 + 0.0020 ∗ y2,
(6)

where sti is an internal state of the controller and yi is an
input to the controller. There are additional similar expres-
sions to compute the other states and the outputs of the
controller.

Consider a fixed-point implementation of this controller.
If we assume an input range of [−10, 10] for all input vari-
ables and a uniform bit length of 16, each input variable gets
assigned the fixed-point format 〈1, 16, 11〉. This means that
of the 16 bits we use 1 bit to represent the sign of the number,
4 bits for the integer part (10 < 24 = 16), and the remaining
11 bits for the fractional part. The constant−0.0078 gets the
format 〈1, 16, 22〉 (0.0078 < 216−1−22 = 2−7 = 0.0078125).
If we multiply st1 now by −0.0078, the result will have 33
bits, which we fit into 16 bits by performing a right shift.
Following the order of arithmetic operations in (6) gives the
following fixed-point arithmetic program:

tmp0 = ((-32716l * st1) >> 18)
tmp1 = ((29662l * st2) >> 15)
tmp2 = ((tmp0 + (tmp1 << 4)) >> 4)
tmp3 = ((-18979l * st3) >> 16)
tmp4 = (((tmp2 << 4) + tmp3) >> 4)
tmp5 = ((-20552l * st4) >> 15)
tmp6 = (((tmp4 << 4) + tmp5) >> 4)
tmp7 = ((-20133l * y1) >> 22)
tmp8 = (((tmp6 << 4) + tmp7) >> 4)
tmp9 = ((16777l * y2) >> 19)
tmp10 = (((tmp8 << 4) + tmp9) >> 4)
return tmp10

The fixed-point arithmetic implementation of the controller
can have a large roundoff error. For example, because of the
representation, the input values can already have an error
as large as 0.00049. These errors then propagate through-
out the computation. For a specific implementation, such
as the one above, we can compute an upper bound on the
error using an affine arithmetic-based static analysis. For
our example, the maximum absolute error bound is 3.9e-3.
We can bound the error from below using simulation, where
we run the floating-point and the fixed-point programs side-
by-side on a large number of random inputs and compare
the results. Note that this technique only gives us an under-
approximation. Using this approach, we get a lower bound
on the error of 3.06e-3.

One way to reduce the error is to increase the bit length.
If we add one bit to each variable, we get a simulated max-
imum error of 1.51e-3, which is an improvement by about
50%. However, increasing bitwidths may require implement-
ing circuits with larger areas or using larger datatypes, and
may not be feasible. A different possibility is to use a dif-
ferent order of evaluation for the expression. As fixed-point
arithmetic operations are not associative, two different eval-
uation orders for the same implementation can have sig-
nificantly different absolute errors. Consider the following
reordering of Equation (6):

((0.9052 ∗ st2) + (((st3 ∗ −0.0181) + (−0.0078 ∗ st1)) +

(((−0.0392 ∗ st4) + (−0.0003 ∗ y1)) + (0.002 ∗ y2)))).
(7)

expression simulated error
original 3.06e-3

worst rewrite 3.11e-3
additional bit 1.52e-3
best rewrite 1.39e-3

best found by GP 1.39e-3

Figure 1: Summary of absolute errors for different
implementations

When implemented using 16-bit fixed-point arithmetic, we
find, using our static analysis, that the maximum error
bound is 1.39e-03, which is an even larger improvement of
55%, without requiring any extra resources.

Our approach is to search the space of possible imple-
mentations of an arithmetic expression to find one that has
the minimum fixed-point implementation error bound. We
search the space using genetic programming (GP). Figure 1
summarizes the worst-case error bounds for the different for-
mulations of the expression. By exhaustively enumerating
all possible rewrites, we see that the maximum error bounds
can vary between approximately 1.39e-3 and 3.11e-3. That
is, even for a relatively short example, the worst error bound
can be over a factor of 2 larger than the best possible one.
GP can find the optimal expression without an exhaustive
enumeration and can do this at analysis time. This does
not cost any additional resources, thus we get the additional
precision “for free”.

4. GENERATING FIXED-POINT EXPRES-
SIONS

We now describe our algorithm to reduce the error of
fixed-point programs. That is, given a real valued expres-
sion t we aim to find an expression t′ that is mathematically
equivalent to t and whose implementation in fixed-point
arithmetic minimizes, among all equivalent expressions, the
worst-case absolute error over all inputs in given ranges I:

min
equivalent t′

max
x∈I

∣∣∣tr(x)− t′f (x)
∣∣∣.

Algorithm 1 gives an overview of our search procedure,
whose steps we explain in the following paragraphs. The in-
put to our algorithm is a real valued expression and ranges
for its variables. Our tool initializes the initial population
with this expression.

4.1 Instantiating Genetic Programming
We now instantiate the genetic programming parameters

for our problem. Our mutation and crossover operators gen-
erate expressions that are mathematically equivalent to the
initial expression. Our fitness function quantifies the nu-
merical error between the fixed-point implementation and
the mathematical expression.

Mutation. The mutation operator selects a random node in
the expression AST and applies one of the applicable rewrite
rules from Figure 2. The rules capture the usual commu-
tativity, distributivity and associativity of real arithmetic.
Some of these rules do not have an effect on the numerical
precision by themselves, but are necessary to generate other
rewrites of an expression. To keep the operations simple,
we rewrite subtractions (a − b → a + (−b)) and divisions
(a/b→ a ∗ (1/b)) before the GP run.

Crossover. Given two trees t1 and t2 as candidates for
crossover, the genetic algorithm picks a random node in t1,

Algorithm 4.1:

1:Input: expression, input ranges
2:initialize population of 30 expressions

3: repeat for 30 generations
4: generate 30 new expressions:
5: select 2 expressions with tournament selection
6: do equivalence-preserving crossover
7: do equivalence-preserving mutation
7: evaluate fitness (worst-case error bound)

8:Output: best expression found during entire run

(1) (a + b) + c = a + (b + c) (8) 1/a * 1/b = 1/(ab)
(2) a + b = b + a (9) - (1/a) = 1/(-a)
(3) (-a) + (-b) = -(a + b) (10) (a * b) + (a * c) = a * (b + c)
(4) (a * b) * c = a * (b * c) (11) (a * c) + (b * c) = (a + b) * c
(5) a * b = b *a (12) (a * b) + (c * a) = a * (b + c)
(6) (-a) * b = - (a * b) (13) (b * a) + (a * c) = (b + c) * a
(7) a * (-b) = - (a * b)

Figure 2: Rewrite rules.

which is the root of the subtree s1. To ensure that crossover
produces a mathematically equivalent expression, we have
to find a subtree s2 in t2 that is mathematically equivalent
to s1 in an efficient way. Instead of implementing a general
decision procedure, we chose to do the following. At initial-
ization, each subtree is annotated with a label that is the
string representation of the expression at that subtree. Dur-
ing mutation, labels are preserved in the new generation as
much as possible. For example, suppose we have the node
(a + b) + c, with label (a + b) + c. We can apply muta-
tion rule 1 to obtain a + (b + c) but the label will remain
(a + b) + c. Note that some of the mutation rules break
equivalences (e.g. mutation rule 10), hence not all labels
can be preserved. In that case we add a new label. During
crossover, we then only need to check for identical labels. If
labels match, it means that the subtrees come from the same
initial subtree and hence are mathematically equivalent and
we can exchange them in a crossover operation.

Parameters. Our genetic programming pipeline has sev-
eral parameters that can influence the results: the popula-
tion size (we choose 30 as we observe no benefit beyond this
value), the number of best individuals passed on to the next
generation unchanged (elitism) (0, 2 or 6), the number of in-
dividuals considered during tournament selection (2, 4 or 6),
and the probability of crossover (0.0, 0.5, 0.75 or 1.0). The
most successful setting we found is with a tournament selec-
tion among 4 and an elitism of 2 while performing crossover
every time, i.e. with probability of 1.0. Note, however, that
even in the case of other settings, the improvements are still
significant (on the order of 50%).

4.2 Fitness Evaluation
We use a static analysis based approach to compute the

fitness of an expression. Our static analysis tool computes
sound over approximations of the ranges of all variables and
of the maximum absolute error of the corresponding fixed-
point implementation.

Our tool uses affine arithmetic to compute the ranges of
all intermediate values. From this we can determine the
best possible fixed-point format and the quantization error
at each computation step. Our approach is similar to [8],
but we treat constants like normal variables and we do not

0	

0.0005	

0.001	

0.0015	

0.002	

0.0025	

0.003	

0.0035	

0.004	

0.0045	
Ab

so
lu
te
	 e
rr
or
	

50	 randomly	 generated	 equivalent	 expressions,	 sorted	 by	 analyzed	 error	

Simulated	
Analyzed	

Figure 3: Comparison of analyzed upper bound and
simulated lower bound on maximum errors for the
linear benchmark batch processor (state 2).

0	

0.02	

0.04	

0.06	

0.08	

0.1	

0.12	

0.14	

0.16	

0.18	

Ab
so
lu
te
	 e
rr
or
	

50	 randomly	 generated	 equivalent	 expressions,	 sorted	 by	 analyzed	 error	

Simulated	
Analyzed	

Figure 4: Comparison of analyzed upper bound and
simulated lower bound on maximum errors for the
nonlinear benchmark rigid body (out1).

discard higher order terms, which is the approach taken in
[6] for floating-point arithmetic. The latter difference means
that the error bounds we compute are sound with respect to
real arithmetic.

If we are interested in proving that the roundoff errors
stay within certain bounds, the computed bounds on the
absolute errors need to be as tight as possible. Note that the
main requirement on the analysis in our problem is slightly
different. While tight bounds on errors are an advantage,
what we need to know is the relative precision of our analysis
tool. That is, we need to know whether the analysis tool
is able to distinguish a better implementation from a less
precise one. To see why this is different from the usual case,
note that the analysis tool assumes worst-case errors at each
computation step. It general, however, the worst-case errors
will not be attained at all computation steps.

Thus, before using our analysis tool in a GP framework,
we evaluate this property experimentally. We generate a
number of random rewrites for an expression, for which we
then obtain the actual errors by simulation. We present
here the results for one linear and one nonlinear benchmark
(batch controller, state 2 and rigid body, out 1 respectively).
For 100 random different expression formulations, the ratio
between the analyzed upper bound on the error and the
simulated lower bound on the error has a mean of 1.29387
and a variance of 0.00082 for the batch controller, state 2
benchmark and a mean of 1.66697 and a variance of 0.08315
for the rigid body, out 1 benchmark. Figures 3 and 4 show
a direct comparison between the analyzed and simulated
errors. In the linear case, the computed bounds on the errors
are proportional to the actual errors, thus indicating a good
relative precision. In the nonlinear case the correspondence

is not as precise, however we expect it to be still sufficient for
our purpose. The “more nonlinear” a computation becomes,
the less precise we expect affine arithmetic to be.

4.3 Why Genetic Programming?
It is in general not evident from an expression whether

it is in a good form with respect to precision and exhaus-
tively enumerating all possible formulations of expressions
becomes impossible very quickly. For only linear expressions
the number of possible orders of adding n terms modulo
commutativity, which does not affect precision, is (2n−3)!!1.
For our example from Section 3 with 6 terms there are al-
ready 945 expressions. For our largest benchmark with 15
terms there are too many possibilities to enumerate.

We thus need a suitable search strategy to find a good
formulation of an expression among all the possibilities. We
show in Section 7 that the problem of finding an expres-
sion whose worst-case error bound is minimal is NP-hard
and that it amounts to minimizing the ranges of intermedi-
ate variables. Since the inputs for the expressions can, in
general, be positive and negative, optimizing one subcom-
putation may lead to a very large intermediate sum in a
different part of the expression. An algorithm that tries to
find the optimal solution in a systematic way (e.g. dynamic
programming) is thus unlikely to succeed. Our problem also
does not have a notion of a gradient, so gradient descent ap-
proaches are not readily applicable, and it cannot be easily
formulated in terms of inputs and outputs or contraints, so
constraint-solving approaches are not applicable either. Ge-
netic programming does not rely on any of these features,
and its formulation as a search over program ASTs fits our
problem.

5. OPTIMAL CONTROLLER SYNTHESIS
The controller for a discrete-time linear control system is

given by Equation (5) and Equation (4). If we implement
the controller using fixed-point arithmetic, we introduce ad-
ditive error to the output of the controller. Thus the fixed-
point implementation of the controller is given by:{

x̂[r + 1] = (Aτ −BτK − LC)x̂[r] + Ly[r] + eq1,
û[r + 1] = −Kx̂[r + 1] + eq2,

(8)

where eq1 ∈ Rn and eq2 ∈ Rm. The vector e =

[
eq1
eq2

]
captures the implementation error of the controller.

One of the fundamental properties of a control system
is asymptotic stability. It is possible to design a controller
mathematically (finding the matrices K and L) such that
the system in (3) is asymptotically stable with respect to
origin [10], which intuitively means that the state of the
plant will asymptotically converges to the origin. However,
as shown in [2], in the presence of implementation error the
state of plant can only be shown to converge asymptotically
in a set around the origin. The set is called the region of
practical stability. The following proposition formalizes the
result. We use ‖x‖ to represent euclidian norm of x.

Proposition 1. [2] Assume that the mathematical con-
troller in (4) with the observer in (5) can render the plant
1The number of full binary trees with n leaves is Cn−1,
where Cn are the Catalan numbers. We can label each of
the trees in n! ways. Taking into account commutativity

gives:
Cn−1·n!
2n−1 .

in (3) asymptotically stable. If there exists a constant b such
that ‖e‖ ≤ b(e), then the implementation (8) of the con-
troller is guaranteed to render the state of the plant asymp-
totically to the set

Ay = {y ∈ Rp | ‖y‖ ≤ γyb(e)} , (9)

where γy is given by:

γy = max
θ∈[0, 2π[

∥∥∥∥[C 0p×n]
(
eiθI2n −G

)−1

H

∥∥∥∥ . (10)

where γy is called the L2-gain of the control system. The
matrices G and H are given by

G =

[
Aτ −BτK
LC Aτ −BτK − LC

]
, H2 =

[
0n×n Bτ
In 0n×m

]
.

Controller synthesis has been traditionally performed by
minimizing LQR and LQG costs [10], but ignoring imple-
mentation effects. Recently, Majumdar et al. [16] described
a controller design methodology that synthesizes a controller
co-optimizing both the LQR/LQG cost and the region of
practical stability. They optimize a weighted linear com-
bination of the two cost functions using a stochastic local
search technique called particle swarm optimization (PSO)
[14].

PSO iteratively solves an optimization problem by main-
taining a population (or swarm) of candidate controllers,
called particles, and moving them around in the search-
space of possible controllers, trying to minimize the ob-
jective function. In each step of PSO, given a new con-
troller, a bound on the implementation error is estimated
for a naive implementation. The value of the objective
function is computed by taking the weighted sum of the
LQR-LQG cost and this bound. If the controller is given by
K = [k1, k2, . . . , kn] and the state of the plant is denoted
by x = [x1, x2, . . . , xn], then the mathematical expression
for the controller is (((k1x1 + k2x2) + k3x3) + . . .+ knxn).

In [16], the authors estimated the error in implementing
this expression but did not consider different equivalent im-
plementations. We refer to this expression the baseline im-
plementation. In our experinemts, we use our genetic algo-
rithm to search for the best expression, that is, the fixed-
point expression giving the least error bound. We call the
corresponding controller implementation the improved im-
plementation.

Let K denote the controller gains synthesized by the PSO
step. Suppose that the bound on the error in its baseline im-
plementation is bbK , and that for its improved implementa-
tion is biK . There may exist another controller K′ for which
the bounds on the error in its baseline and improved imple-
mentations are bbK′ and biK′ respectively, such that bbK < bbK′ ,
and biK′ < biK . This implies that if we use the method in [16]
to implement the baseline controller and then employ the
rewriting scheme to get the improved controller, we may
not obtain the best possible controller implementation.

To achieve the best possible implementation for a con-
troller, we take the following strategy. In every step of PSO,
for a given controller, we start with the naive expression
and apply our genetic-programming-based rewriting tech-
nique to find the best expression. We use this bound on the
implementation error of the best expression in the objective
function. The controller implemented using this new objec-
tive function is referred as the optimal implementation. In
the next section, we show that this combination of search

Benchmark err
orig.- no-cross

orig.
orig.- best

orig.
g

bicycle (out1) 2.66e-3 0.00 0.00 -
bicycle (state1) 2.53e-4 0.19 0.19 1
bicycle (state2) 1.82e-4 0.00 0.00 -
dc motor (out1) 1.06e-4 0.00 0.00 -
dc motor (state1) 2.77e-4 0.00 0.00 -
dc motor (state2) 3.75e-4 0.25 0.25 4
dc motor (state3) 1.27e-4 0.00 0.00 -
pendulum (out1) 8.09e-8 0.03 0.03 5
pendulum (state1) 5.13e-9 0.17 0.17 1
pendulum (state2) 6.11e-9 0.38 0.38 16
pendulum (state3) 5.14e-9 0.00 0.00 -
pendulum (state4) 4.97e-9 0.27 0.27 7
pitch angle (out1) 1.33e-7 0.18 0.18 4
pitch angle (state1) 4.26e-9 0.30 0.30 2
pitch angle (state2) 2.79e-9 0.00 0.00 -
pitch angle (state3) 3.81e-9 0.20 0.20 2
batch reactor (out1) 5.15e-4 0.00 0.00 -
batch reactor (out2) 1.28e-3 0.12 0.12 2
batch reactor (state1) 3.46e-4 0.15 0.15 1
batch reactor (state2) 2.77e-4 0.00 0.00 -
batch reactor (state3) 3.55e-4 0.26 0.26 2
batch reactor (state4) 4.11e-4 0.23 0.23 7
traincar 1 (out) 1.11e-4 0.09 0.09 2
traincar 1 (state 1) 1.98e-6 0.03 0.03 6
traincar 1 (state 2) 3.57e-7 0.25 0.25 16
traincar 1 (state 3) 2.79e-7 0.24 0.24 7
traincar 2 (out) 7.40e-5 0.09 0.09 19
traincar 2 (state 3) 1.23e-7 0.49 0.59 21
traincar 3 (out) 1.26e-3 0.13 0.13 7
traincar 3 (state 6) 1.32e-7 0.48 0.58 21
traincar 3 (state 7) 1.31e-7 0.43 0.53 17
traincar 4 (out) 9.34e-3 0.26 0.29 27
traincar 4 (state 1) 7.29e-8 0.73 0.73 19
traincar 4 (state 2) 7.34e-8 0.67 0.73 25
traincar 4 (state 3) 1.01e-7 0.66 0.60 14
traincar 4 (state 4) 6.96e-8 0.64 0.70 26
traincar 4 (state 5) 1.42e-7 0.61 0.68 26
traincar 4 (state 6) 1.67e-7 0.59 0.59 16
traincar 4 (state 7) 1.67e-7 0.56 0.56 13
traincar 4 (state 8) 1.38e-7 0.60 0.60 19
traincar 4 (state 9) 1.67e-7 0.47 0.47 7
bspline 1 2.29e-4 0.36 0.36 6
bspline 2 1.66e-4 0.52 0.52 4
rigid-body (out1) 1.08e-1 0.33 0.33 5
rigid-body (out2) 9.92e-1 0.20 0.20 15

Figure 5: Maximum absolute errors for the best ex-
pression found by GP with the settings elitism: 2,
tournament selection: 4, with and without crossover
(seed used: 4357). err is the analyzed error. g de-
notes the generation in which the solution is found.

strategies improves the bounds on the region of practical
stability of the synthesized controllers.

6. EXPERIMENTS
We evaluate our technique on a number of controller

benchmarks: a bicycle model [4], a DC motor position
control [25], a pitch angle control [25], an inverted pendu-
lum [25], and a batch reactor process [9]. The controllers for
these systems are taken from [16], which attempted to min-
imize the size of the region of practical stability by choosing
a controller whose fixed point implementation has the best
possible bound on the error among all controllers that stabi-
lize the plant. To show the scalability of our tool we choose
the example of a locomotive pulling a train car where the
connection between the locomotive and the car is modeled

by a spring in parallel with a damper [20]. By increasing the
number of cars, we can increase the dimension of the system.
We also consider a nonlinear controller for a rigid body [3]
and the nonlinear B-splines functions [15]. Though most of
our benchmarks are from the controller domain, nothing in
our approach is actually domain specific.

Each benchmark consists of one expression and ranges for
its input parameters. We wish to minimize the error on the
one output value it computes over all possible inputs. Some
of the benchmarks compute internal states of a controller
(denoted with e.g. “state 1”). Since each state is computed
with a different expression, we treat them here as separate
benchmarks.

For all benchmarks we consider a fixed bit length, signed
fixed-point format, and truncation as the rounding mode.
Table 5 lists the maximum absolute errors (computed by our
analysis tool) for the best expressions found by GP for all
our benchmarks. The best found expression is the same for
different bit lengths, so that the computed results are appli-
cable in several different hardware settings. The benchmarks
are ordered approximately by complexity with the smaller
linear benchmarks first and the nonlinear benchmarks at the
end of the table. From the third column we can see that we
get substantial improvements in precision of up to 70%.

6.1 Exhaustive Rewriting
For our smaller benchmarks (linear with up to 6 terms)

we also generate all possible rewrites up to commutativity
and determine tight bounds on the maximum errors by sim-
ulation. For this, we first automatically generate a fixed-
point implementation, which we then evaluate on a number
of random inputs. We use the floating-point code as ref-
erence, thus obtaining a lower bound on the error. Using
a large enough number of random inputs (10 000 000), we
obtain reasonably tight error bounds. Figure 6 shows the
simulation results for the original formulation of the expres-
sion and the best and worst among all the possible rewrites.
From the 10 benchmarks, 6 have an error in the original for-
mulation that is about as bad as it gets. But we can also
see that the best possible rewrite can improve the precision
substantially. On the other hand, the expression may also
be such that no matter how we rewrite it, the precision does
not vary much, as is the case with the traincar 1, state 1
benchmark. This case, however, seems to be rather rare.

The other possibility of improving the precision is to in-
crease the bit length. We do so in a minimal way by allowing
one more bit for each intermediate variable, i.e., we increase
the bit length by one and evaluate the precision with simula-
tion. Note that in many cases, such a gradual increase may
not be possible and one would have to add a whole word,
e.g. go from 16 to 32 bits, with the associated increase in
hardware cost. Compile-time transformations, on the other
hand, come “for free” and, as Figure 6 shows, can have an
effect on the same order as the addition of a bit. In the case
of longer benchmarks, the effect of rewriting can be even
larger (see Figure 5), while the added bit always gains only
about 50% of precision as compared to the original error.

6.2 Genetic Programming
Table 5 shows the results obtained for the most success-

ful setting we have found. It also shows the results with
crossover turned off. The comparison of these two columns
suggests that crossover is helpful. We therefore expect that

0.E+00	

1.E-‐07	

2.E-‐07	

3.E-‐07	

0	 4	 8	 12	 16	 20	 24	 28	 Ab
so
lu
te
	 e
rr
or
	 (a

na
ly
ze
d)
	

Genera3on	

min	 max	 average	

Figure 9: Evolution of errors across generations for
the traincar 4 - state 1 example.

randomized local search techniques are not as effective as ge-
netic programming, but they still produce useful reductions
in the errors.

Optimality. For the smaller benchmarks, GP always finds
the same expressions with respect to the error bounds. Ex-
haustive enumeration has confirmed that the found expres-
sions are indeed the optimal ones. For larger benchmarks,
we do get improvements and we know of no technique to
obtain better results.

Performance. The runtimes of our GP algorithm depend
in general mostly on the number of generations considered
and the population size. Crossover only has a small effect
on the overall runtime, but we have found that it provides
the best results in the setting given above. In Table 7 we
report the running times of our benchmarks with the default
setting of 30 generations with a population size of 30 and
the best GP settings we found.

Efficiency improvement over random search. For the
expressions of the traincar 4 controller (15 terms) we also
compare the results from the GP algorithm against a ran-
dom search. This experiment is performed by generating
900 random and unique rewrites of the original expression,
and comparing the best seen expressions against each other.
Since we run the GP algorithm for 30 generations with a
population of 30, we can see at most 900 unique expressions.
As the results in Table 8 confirm, the GP based search is
more effective than a random one. The third column shows
the relative difference between the errors. Thus, many times
the GP found expression is by over 50% more accurate than
a randomly found one. That GP does not perform a random
search can also be seen on the evolution of the population
in Figure 9 for one benchmark (traincar 4, state 1). The
plot shows the best, worst and the average errors of the ex-
pressions in each generation. The convergence to a low-error
expression is clear.

6.3 Controller Performance
We implemented the algorithm presented in Section 5

in Matlab. The algorithm incorporates genetic algorithm
based expression rewriting in the search for the optimal
controller using PSO. We use a PSO function in Matlab
from [7]. We have used the same setup for PSO as used in
[16]. In Table 10 we provide the synthesized controllers and
the time required to synthesize them. The synthesis exper-
iments were done on a laptop running Mac OS X version
10.7.4 with 2 GHz Intel Core i7 CPU and 8GB 1600MHz
DDR3 Memory.

In Table 11, we present the size of the region of practical
stability for the baseline, improved and the optimal con-

Benchmark Original
Best

(% of original)
Worst

(% of original)
Added bit

(% of original)
batch processor (out 1) 2.89e-3 0.91 1.37 0.51
batch processor (out 2) 7.20e-3 0.81 1.13 0.49
batch processor (state 1) 2.66e-3 0.52 1.02 0.50
batch processor (state 2) 3.06e-3 0.45 1.03 0.50
batch processor (state 3) 2.66e-3 0.50 1.16 0.49
batch processor (state 4) 2.24e-3 0.61 1.40 0.51
traincar 1 (out) 5.29e-5 0.78 1.02 0.60
traincar 1 (state 1) 1.02e-6 0.97 1.01 0.50
traincar 1 (state 2) 2.66e-7 0.71 1.02 0.52
traincar 1 (state 3) 2.04e-7 0.74 1.14 0.48

Figure 6: Best and worst absolute errors, determined by simulation.

Examples Runtime (s)
batch (out1) 1.964
batch (state2) 2.735
traincar 1 (state 3) 6.358
traincar 2 (state 5) 9.794
traincar 3 (state 7) 15.388
traincar 4 (state 9) 17.228
rigid-body (out1) 1.394
rigid-body (out2) 2.698
bspline 1 2.234

Figure 7: Average runtimes of GP on selected
benchmarks in seconds. Experiments were per-
formed on a 3.5GHz Linux desktop with 16GB
RAM.

Example GP Random (Rnd-GP)/Rnd
traincar 4 (out) 0.00934 0.0103 0.09
traincar 4 (1) 7.29e-8 2.07e-7 0.65
traincar 4 (2) 7.34e-8 2.08e-7 0.65
traincar 4 (3) 1.01e-7 1.90e-7 0.47
traincar 4 (4) 6.96e-8 1.74e-7 0.60
traincar 4 (5) 1.42e-7 3.21e-7 0.56
traincar 4 (6) 1.67e-7 2.86e-7 0.42
traincar 4 (7) 1.67e-7 2.57e-7 0.35
traincar 4 (8) 1.38e-7 2.28e-7 0.39
traincar 4 (9) 1.67e-7 1.97e-7 0.15

Figure 8: Comparison of maximal errors between
best expressions from GP and random search.

Control systems # bits Synthesized gains Time cost
K L

bicycle 16 [3.0265e+ 0 1.2608e+ 1] [6.9088e− 3 1.1135e− 1]T 51m36s
dc motor 16 [1.1760e-1 1.7400e-2 1.3300e-2] [4.0400e-2 3.6720e-1 -1.2400e-2]T 43m15s

pitch angle 32 [-1.2022e-1 4.2566e+1 1.0004e+0] [3.2131e-4 2.1565e-5 1.8907e-3]T 1hr21m58s

pendulum 32 [-1.5362e+0 -2.0254e+0 1.6519e+1 2.7358e+0]

[
1.7000e-3 2.1000e-3 1.2000e-3 0.0000e+0
1.0000e-4 1.8000e-3 1.2200e-2 7.7000e-2

]
T 38m43s

batch reactor 16

[
5.9434e-2 9.0617e-1 3.2788e-1 8.7115e-1

-2.4646e+0 -4.4966e-2 -1.7086e+0 1.1691e+0

] [
7.6055e-2 -1.8342e-3 2.9025e-2 3.0801e-2
-1.1106e-2 2.2255e-2 3.9666e-2 -9.2832e-4

]
T 2hr45m35s

Figure 10: Synthesized gains and required time for synthesizing them.

trollers for different benchmark systems and also the per-
centage improvement in the size of the region for the im-
proved and the optimal controllers. The baseline and the
improved implementations are based on the controllers pro-
vided in [16], and the optimal implementations are based
on the controllers synthesized using the algorithm presented
in Section 5. Note that the region of practical stability for
the baseline implementation varies from the result provided
in [16]. For example, for bicycle, the size of the region was
presented as 0.0513 ignoring the effect of disturbance and
measurement noise, the corresponding figure is 0.0785 in
our experiment. This discrepancy is due to the fact that we
use a different method to estimate the bound on the error
in the fixed-point implementation. Our abstract interpreta-
tion based error estimation method is an order of magnitude
faster than the mixed-integer linear programming approach
in [16], which is apparent from the “time cost” column in Ta-
ble 11. Even after incorporating the genetic programming
based expression evaluation method in the synthesis process,
our tool takes less time to synthesize a controller for all the
benchmarks. Moreover, though our error estimation is less
precise in comparison to that of [16] for 16 bit implementa-
tions, for 32 bit implementations (pitch angle and inverted
pendulum) our estimation is significantly more precise.

The results in Table 11 show that we can improve the size

Control Region of Practical Stability Improvement (%)
systems Baseline Improved Optimal Improved Optimal
bicycle 7.85e-02 7.70e-02 6.99e-02 1.93 10.96

dc motor 1.64e-02 1.44e-02 9.80e-03 12.14 40.24
pitch angle 1.08e-02 8.87e-03 5.15e-03 18.00 52.32
pendulum 3.11e-04 2.64e-04 2.51e-04 14.76 19.26

batch reactor 2.59e-01 2.24e-01 2.07e-01 13.31 20.08

Figure 11: Improvement in the size of region of prac-
tical stability for the improved and synthesized con-
trollers.

of the region by rewriting the expression used in the base-
line implementation. However, the improvement becomes
significant when we incorporate the rewriting technique in
the search method. Our results show that it is even possible
to achieve more that 50% improvement in the synthesized
controller with respect to the baseline controller. Table 12
shows the LQR/LQG cost of the baseline and the optimal
controllers. The results show that in most of the examples,
LQR and LQG costs do not degrade in the optimal con-
troller with respect to the baseline controller. Only for the
DC motor position example, the degradation in LQR cost is
8%. In a few instances, the LQG cost even improves.

Control lub of LQR cost LQG cost
systems Baseline Optimal Baseline Optimal

bicycle 4.33+3‖x‖2 4.33e+3‖x‖2 2.46e-2 2.47e-2
dc motor 1.38e+3‖x‖2 1.50e+3‖x‖2 3.67e+1 3.67e+1

pitch angle 2.99e+6‖x‖2 2.99e+6‖x‖2 1.80e-3 1.58e-3
pendulum 5.35e+4‖x‖2 5.35e+4‖x‖2 3.90e-1 3.90e-1

batch reactor 2.23e+2‖x‖2 2.23e+2‖x‖2 9.49e-2 9.08e-2

Figure 12: Least upper bound (lub) on the LQR cost,
for a given initial condition x and the LQG cost for
the baseline and the optimal implementations.

7. OPTIMAL FIXED-POINT PROGRAM
SYNTHESIS PROBLEM IS NP-HARD

Finally, we show that, given an arithmetic expression, the
problem of finding a mathematically equivalent expression
for which the computed worst-case error bound of the output
of the fixed-point implementation is least is NP-hard. This
justifies our use of a heuristic search method. We show NP-
hardness already for a problem that deals with the operator
‘+’ alone.

For an expression T , we define the worst-case error bound
of the best fixed-point implementation, denoted E(T), as fol-
lows. Let the set of internal nodes of T be denoted by ni and
consider the best fixed-point implementation of T with tight
intervals, as introduced in Subsection 2.1. As the worst case
error ei at node ni we use

ei = R(max(abs(rmini), abs(rmaxi))))/2v−1,

where R is a function used to make the bound uniform.
A possible sound choice for R is R(x) = 2dlog2 xe, which,
according to Definition (1), makes the error equal to the
value of the least significant bit 2−w. Another, slightly more
conservative choice, is R(x) = 21+log2 x = 2x, which we
adopt here.

Minimum-Error Fixed-point Set Range Sum (MEFxRS): Let
X = {x1, . . . , xp} denote a set of variables, xi ∈ R. Given an
expression of the form

∑p
i=1 xi, where each variable xi can

take value from a range [rmini , rmaxi], and a positive integer
κ denoting the number of bits to represent each variable and
constant in the fixed-point implementation, find the ordering
of the addition operations that yields the minimal worst-
case error bound of the best fixed-point implementation of
the expression.

Our objective is to show that the MEFxRS problem is NP-
hard. Towards that end, we first define a simplified problem
where we compute the sum of a set of integers (instead of
intervals). Note that the numbers may be both positive and
negative.

Minimum-Error Fixed-point Set Value Sum (MEFxVS): Let
X = {v1, . . . , vp} denote a set of integers. Given an expres-
sion of the form

∑p
i=1 vi, and a positive integer κ denoting

the number of bits to represent each variable and constant in
the fixed-point implementation, find out the ordering of the
addition operations, that yields the minimal worst-case error
bound at the output of the best fixed-point implementation
of the expression.

It is straightforward to show that an instance of the
MEFxVS problem with values vi can be reduced to an in-
stance of the MEFxRS problem, for example, by letting
rmini = rmaxi = vi. In what follows, we show that MEFxVS
is NP-hard.

To show that the problem MEFxVS is NP-hard, we con-
sider the following decision version of the problem:

Fixed-point Set Value Sum (FxVS): Let X = {v1, . . . , vp}
denote a set of non-zero integers. Given an expression of the
form

∑p
i=1 vi, and a positive integer κ denoting the number

of bits to represent each variable and constant in the fixed-
point implementation, does there exist an ordering of the
addition operations, such that the worst-case error bound
at the output of the best fixed-point implementation of the
expression is less than η?

Since the operator + is applied to two operands at a time,
an ordering for adding X corresponds to a binary addition
tree of p leaves and p − 1 internal nodes, where a leaf is
a vi, i ∈ {1, . . . , p}, and an internal node is the sum of its
two children. Thus an internal node nj , j ∈ {1, . . . , p − 1},
represents a partial sum and we denote the partial sum at
node ni by ci. The cost C(T) of an addition tree T is defined
as:

C(T) =

p−1∑
i=1

|ci|.

We reduce the NP-hard problem Addition tree (AT) to
Fixed-point Set Value Sum (FxVS) problem to show that
the latter problem is NP-hard. The Addition Tree (AT)
problem [13] is defined as follows:

Addition Tree (AT): Let X = {v1, . . . , vp} denote a set of
non-zero integers. Does there exist an addition tree T with
C(T) ≤ K?

We now show the reduction of Addition Tree (AT) prob-
lem to the Fixed-point Set Value Sum (FxVS) problem.
Note that as we are dealing with integers, the fixed-point
values at different nodes in the addition tree in the FxVS
problem are same as the corresponding values in the AT
problem. However, due to our definition of worst case error,
every internal node in the addition tree also contributes to
the worst case error.

For the fixed-point implementation, we first decide on
a bit length that ensures that no overflows happen in the
internal nodes. Let Xpos = {wp1, . . . , wpq}, q < p, be
the subset of X that contains only positive integers and
Xneg = {wn1, . . . , wnp−q} be the subset of X that contains
only negative integers. Let us define U as

U = max (

q∑
i=1

wpi,

p−q∑
i=1

|wni|).

The bit-length v is then chosen as v = dlog2(U)e.
Note that the fixed-point value at the internal node ni is

ci. To use our definition for the worst-case error bound, note
that rmini = rmaxi = ci. Then,

ei =
1

2v−1
R(|ci|) =

1

2v−2
|ci|.

Thus, at any internal node ni, the error ei is α|ci| for

α = 2−(v−2). The errors at the leaf nodes are constant and
we denote their sum by e0. The worst-case error bound for
the implementation tree T is thus given by

E(T) = e0 + α

p−1∑
i=1

|ci| = e0 + αC(T).

For a fixed number of overall bits, v, e0, and α are constant.
So, for an instance of the AT problem with parameter K,

we create an instance of the FxVS problem with parameters
κ = v and η = e0 + αK. The NP-hardness of MEFxRS
follows.

Theorem 1. The Minimum-Error Fixed-point Set Range
Sum (MEFxRS) problem is NP-hard.

8. RELATED WORK
Jha [12] gives an algorithm for optimal fixed-point pro-

gram synthesis based on inductive synthesis. His objective
is to find the best fixed-point implementation for a given
expression, and does not consider rewriting of expressions.
Moreover, it takes several minutes to synthesize a fixed-point
program corresponding to an expression, whereas our tech-
nique can synthesize a fixed-point program corresponding to
an expression in seconds. CGPE [21] is a software tool that
synthesizes fast and certified code for univariate and bivari-
ate polynomials in fixed-point arithmetic, optimized for a
specific target architecture. In contrast to our work, the op-
timization criterion is execution time and error bounds are
merely used to discard final candidate evaluation schemes
that do not meet a basic error bound. The error compu-
tation is interval arithmetic based and it is not clear how
tight the computed error bounds are. Furthermore, our tool
supports any number of variables.

To our knowledge, the only work that considers rewriting
of expressions to improve precision in the context of abstract
interpretation is [11]. The authors develop an abstract do-
main for representing an under-approximation of mathemat-
ically equivalent expressions. They then use a local, greedy
search to extract some expression with a more precise for-
mulation in a floating-point implementation. Similarly to
our fitness computation, their computation of precision of
each expression uses affine arithmetic. Their search is lo-
cal in the sense that subexpressions are optimized without
considering the global error, and thus may exclude many
possible expressions. Matel [18] considered compiling ex-
pressions to fixed-point arithmetic. However, the precision
measure was only the maximum number of bits required to
hold the integral part, which is too imprecise to distinguish
many expressions.

9. CONCLUSION
We have presented a fixed-point program synthesis

methodology based on expression rewriting and genetic pro-
gramming and used it to improve the quality of controller
implementations. Our synthesis tool can be added to an au-
tomatic code generation tool flow to enhance its capability
to generate correct-by-construction high performance con-
troller software. Though we have presented our results on
the benchmarks from the control engineering domain, our
method is general, and can be used in enhancing the quality
of a fixed-point implementation in other domains.

Our algorithm uses abstract interpretation to estimate the
error bound of a fixed-point implementation. While our ab-
stract interpreter is efficient and precise for linear expres-
sions, and hence in optimizing linear controllers, it provides
pessimistic bounds for nonlonear expressions. We believe
developing abstract interpretation-based tools to precisely
estimate errors in programs with nonlinear arithmetic to be
an interesting research direction.

10. REFERENCES
[1] T. Aamodt and P. Chow. Embedded ISA Support for

Enhanced Floating-Point to Fixed-Point ANSI C
Compilation. In CASES, 2000.

[2] A. Anta, R. Majumdar, I. Saha, and P. Tabuada.
Automatic Verification of Control System Implementations.
In EMSOFT, 2010.

[3] A. Anta and P. Tabuada. To Sample or not to Sample:
Self-Triggered Control for Nonlinear Systems. IEEE Trans.
Automatic Control, 55(9), 2010.

[4] K. J. Astrom and R. M. Murray. Feedback Systems.
Princeton University Press, 2008.

[5] P. Belanovic and M. Rupp. Automated Floating-point to
Fixed-point Conversion with the Fixify Environment. In
Proc. Rapid System Prototyping, 2005.

[6] E. Darulova and V. Kuncak. Trustworthy Numerical
Computation in Scala. In OOPSLA, 2011.

[7] S. Ebbesen, P. Kiwitz, and L. Guzzella. A Generic Particle
Swarm Optimization Function for Matlab. In ACC, 2012.

[8] C. F. Fang, R. A. Rutenbar, and T. Chen. Fast, Accurate
Static Analysis for Fixed-Point Finite-Precision Effects in
DSP Designs. In ICCAD, 2003.

[9] M. Green and D. J. N. Limebeer. Linear Robust Control.
Prentice Hall, 1994.

[10] J. P. Hespanha. Linear Systems Theory. Princeton
University Press, 2009.

[11] A. Ioualalen and M. Martel. A New Abstract Domain for
the Representation of Mathematically Equivalent
Expressions. In SAS, 2012.

[12] S. Jha. Towards Automated System Synthesis Using
SCIDUCTION. PhD thesis, University of California at
Berkeley, 2011.

[13] M.-Y. Kao and J. Wang. Efficient Minimization of
Numerical Summation Errors. In Automata, Languages and
Programming. Springer, 1998.

[14] J. Kennedy and R. Eberhart. Particle Swarm Optimization.
In IEEE Neural Networks, pages 1942–1948, 1995.

[15] D. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W. Luk,
and G. A. Constantinides. Accuracy-Guaranteed Bit-Width
Optimization. IEEE Trans. on CAD of Integrated Circuits
and Systems, 25(10), 2006.

[16] R. Majumdar, I. Saha, and M. Zamani. Synthesis of
Minimal-Error Control Software. In EMSOFT, pages
123–132, 2012.

[17] A. Mallik, D. Sinha, P. Banerjee, and H. Zhou. Low-Power
Optimization by Smart Bit-Width Allocation in a
SystemC-Based ASIC Design Environment. IEEE Trans.
on CAD of Integrated Circuits and Systems, 26(3), 2007.

[18] M. Martel. Enhancing the Implementation of Mathematical
Formulas for Fixed-Point and Floating-Point Arithmetics.
Formal Methods in System Design, 35(3), 2009.

[19] The MathWorksTM . Simulink Fixed Point.
http://www.mathworks.com/products/simfixed/.

[20] P. McLane, L. Peppard, and K. Sundareswaran.
Decentralized Feedback Controls for the Brakeless
Operation of Multilocomotive Powered Trains. IEEE
Trans. Autom. Control, 21(3), 1976.

[21] C. Mouilleron and G. Revy. Automatic Generation of Fast
and Certified Code for Polynomial Evaluation. In ARITH,
2011.

[22] W. G. Osborne, R. C. C. Cheung, J. G. F. Coutinho,
W. Luk, and O. Mencer. Automatic Accuracy-Guaranteed
Bit-Width Optimization for Fixed and Floating-Point
Systems. In Proc. FPL, pages 617–620, 2007.

[23] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide
to Genetic Programming. Lulu Enterprises, 2008.

[24] H. H. Rosenbrock. Computer-Aided Control System
Design. Academic Press, 1974.

[25] Control Tutorial for Matlab and Simulink. Available online
at http://www.library.cmu.edu/ctms/ctms/.

