
FLOC 2018:
FEDERATED LOGIC CONFERENCE 2018

PROGRAM AUTHORS KEYWORDS SLIDES

FLoC | FoPSS | ITP | CSF | FSCD | SAT |
CAV | IJCAR | ICLP | FM | LICS | ADHS |
ADSL | ARQNL | ASPOCP | AVOCS | CL&C |
COALG | Coq | DCM | Domains13 | DS-FM |
EICNCL | F-IDE | FCS | FRIDA | GraMSec | GS
| HCVS | HDRA | HOR | HoTT/UF | ICLP-DC |
IFIP WG 1.6 | Isabelle | ITRS | IWC | LaSh |
LCC | LearnAut | LFMTP | Linearity/TLLA | LMW
| LOLA | LPOP | LSB | MLP | MoRe | MSFP |
NLCS | NSV | Overture | PAAR | PARIS | PC |
PLR | POS | PRUV | QBF | RCRA | REFINE |
ReMOTE | rv4rise | SCSC | SMT | SoMLMFM |
SR | SYNT | TERMGRAPH | Tetrapod | ThEdu |
TLA | TYDI | UITP | UNIF | Vampire | VaVAS
| VDMW | VEMDP | VSTTE | WiL | WPTE |
WST

PROGRAM | AUTHORS | KEYWORDS | SLIDES

MLP ON THURSDAY, JULY 19TH

Days: previous day all days

View: session overview talk overview side by side with
other conferences

09:00-10:30 Session 131C

CHAIR: Viktor Kuncak
LOCATION: Blavatnik LT1

09:00 Prem Devambu
Why is Software Natural? and how can
Naturalness be exploited?

ABSTRACT. Sometime during the Summer of
2011, several of us at UC Davis were quite
puzzled and shocked
to discover that software is "natural", viz., just as
repetitive and predictable as
natural language corpora; In fact much more so!
By now, this early experiment has been
replicated many times, in many ways, and various
applications of naturalness have been
developed. But why is this? Is it just because of
programming language syntax? or is it due to
something else, like conscious programmer
choice? How can we study this question?
Are there are other "natural" corpora (other than
software) that are similar to software?

09:45 Swarat Chaudhuri
Program Synthesis as High-Level Machine
Learning

ABSTRACT. The area of deep learning has had

MLP on Thursday, July 19th https://easychair.org/smart-program/FLoC2018...

1 of 5 10/21/18, 4:52 PM

many remarkable successes in the
recent past. However, deep neural networks have
some well-documented
weaknesses: they are data-hungry, brittle, opaque
to users, hard to
analyze, and not easily constrained with axiomatic
knowledge about the
world. In this talk, I will argue that ideas from
programming
languages and program synthesis can offer a way
of overcoming these
weaknesses. Specifically, one can use higher-
level programming
languages, possibly with access to neural
"subroutines", to describe
statistical models normally described neurally.
Such programmatic
models are more easily understood by humans,
can more easily
accommodate axiomatic knowledge about the
world, and are easier to
analyze using symbolic techniques. The use of
"neurosymbolic", as
opposed to purely symbolic, models can lead to
lower complexity of
learning. The compositionality inherent in modern
languages can allow
transfer of knowledge across learning tasks.
Discovering such
programmatic models from data is a form of
program synthesis, and can
perhaps also be described as "high-level machine
learning". Early
experience with the problem suggests that the
literature on
language-integrated program synthesis can offer
powerful tools for
solving this problem. At the same time, the
problem is different from
traditional synthesis in key ways, and opens up
many new technical
challenges.

10:30-11:00 Coffee Break

11:00-12:30 Session 133C

Deep Learning for Code

CHAIR: Viktor Kuncak
LOCATION: Blavatnik LT1

11:00 Eran Yahav
code2vec: Learning Distributed
Representations of Code

11:45 Miltos Allamanis
Understanding & Generating Source Code with
Graph Neural Networks

ABSTRACT. The rich structure of source code
presents an interesting challenge for machine
learning methods. Recently, Graph Neural
Networks (GNN) have shown promising results in

MLP on Thursday, July 19th https://easychair.org/smart-program/FLoC2018...

2 of 5 10/21/18, 4:52 PM

code understanding and code generation tasks. In
this talk, I will briefly discuss two neural models
that employ GNNs: one of them for catching
variable misuse bugs and the other for generating
code expressions. Finally, I will discuss some of
the open challenges that GNNs face on many
source code-related tasks.

12:30-14:00 Lunch Break

14:00-15:30 Session 135C

CHAIR: Viktor Kuncak
LOCATION: Blavatnik LT1

14:00 Danny Tarlow
Neural Network Models of Code Edits

ABSTRACT. I’ll discuss some of our recent efforts
towards building neural network models of edit
sequences, with an eye towards casting source
code autocompletion as learning to edit code. I’ll
frame the problem and explain why it’s a bit
different from other related formulations and then
describe a new attention-based model for the
problem. I’ll show results on carefully designed
synthetic data and a large dataset of fine-grained
edit sequences gathered from thousands of
professional software developers writing code.

14:45 Pushmeet Kohli
Program synthesis and its connections to AGI

ABSTRACT. In this talk, I will address the
questions of

how we specify arbitrary tasks to a learning
system

1.

how we interpret its behaviour, and finally2.
how do we verify or debug it to ensure that
its behaviour is consistent with the task
specification.

3.

I will also describe my initial attempts to make
progress on these questions through program
synthesis and verification.

15:30-16:00 Coffee Break

16:00-18:00 Session 137C

CHAIR: Viktor Kuncak
LOCATION: Blavatnik LT1

16:00 Mukund Raghothaman, Sulekha Kulkarni, Richard
Zhang, Xujie Si, Kihong Heo, Woosuk Lee and
Mayur Naik
Difflog: Beyond Deductive Methods in
Program Analysis
SPEAKER: Mukund Raghothaman

ABSTRACT. Building effective program analysis
tools is a challenging endeavor: analysis
designers must balance multiple competing

MLP on Thursday, July 19th https://easychair.org/smart-program/FLoC2018...

3 of 5 10/21/18, 4:52 PM

objectives, including scalability, fraction of false
alarms, and the possibility of missed bugs. Not all
of these design decisions are optimal when the
analysis is applied to a new program with different
coding idioms, environment assumptions, and
quality requirements. Furthermore, the alarms
produced are typically accompanied by limited
information such as their location and abstract
counter-examples. We present a framework
Difflog that fundamentally extends the deductive
reasoning rules that underlie program analyses
with numerical weights. Each alarm is now
naturally accompanied by a score, indicating
quantities such as the confidence that the alarm is
a real bug, the anticipated severity, or expected
relevance of the alarm to the programmer. To the
analysis user, these techniques offer a lens by
which to focus their attention on the most
important alarms and a uniform method for the
tool to interactively generalize from human
feedback. To the analysis designer, these
techniques offer novel ways to automatically
synthesize analysis rules in a data-driven style.
Difflog shows large reductions in false alarm rates
and missed bugs in large, complex programs, and
it advances the state-of-the-art in synthesizing
non-trivial analyses.

16:30 Milan Cvitkovic, Badal Singh and Anima
Anandkumar
Deep Learning On Code with an Unbounded
Vocabulary
SPEAKER: Milan Cvitkovic

ABSTRACT. A major challenge when using
techniques from Natural Language Processing for
supervised learning on computer program source
code is that many words in code are neologisms.
Reasoning over such an unbounded vocabulary is
not something NLP methods are typically suited
for. We introduce a deep model that contends with
an unbounded vocabulary (at training or test time)
by embedding new words as nodes in a graph as
they are encountered and processing the graph
with a Graph Neural Network.

17:00 Vadim Markovtsev, Waren Long, Egor Bulychev,
Romain Keramitas, Konstantin Slavnov and Gabor
Markowski
Splitting source code identifiers using
Bidirectional LSTM Recurrent Neural Network

SPEAKER: Vadim Markovtsev

ABSTRACT. Programmers make rich use of
natural language in the source code they write
through identifiers and comments. Source code
identifiers are selected from a pool of tokens
which are strongly related to the meaning, naming
conventions, and context. These tokens are often
combined to produce more precise and obvious

MLP on Thursday, July 19th https://easychair.org/smart-program/FLoC2018...

4 of 5 10/21/18, 4:52 PM

designations. Such multi-part identifiers count for
97% of all naming tokens in the Public Git Archive
- the largest dataset of Git repositories to date. We
introduce a bidirectional LSTM recurrent neural
network to detect subtokens in source code
identifiers. We trained that network on 41.7 million
distinct splittable identifiers collected from 182,014
open source projects in Public Git Archive, and
show that it outperforms several other machine
learning models. The proposed network can be
used to improve the upstream models which are
based on source code identifiers, as well as
improving developer experience allowing writing
code without switching the keyboard case.

17:30 Bruno Marnette
Open Business Meeting for Future of Machine
Learning for Programming

Disclaimer | Powered by EasyChair Smart Program

MLP on Thursday, July 19th https://easychair.org/smart-program/FLoC2018...

5 of 5 10/21/18, 4:52 PM

