
FLOC 2018:
FEDERATED LOGIC CONFERENCE 2018

PROGRAM AUTHORS KEYWORDS SLIDES

FLoC | FoPSS | ITP | CSF | FSCD | SAT |
CAV | IJCAR | ICLP | FM | LICS | ADHS |
ADSL | ARQNL | ASPOCP | AVOCS | CL&C |
COALG | Coq | DCM | Domains13 | DS-FM |
EICNCL | F-IDE | FCS | FRIDA | GraMSec | GS
| HCVS | HDRA | HOR | HoTT/UF | ICLP-DC |
IFIP WG 1.6 | Isabelle | ITRS | IWC | LaSh |
LCC | LearnAut | LFMTP | Linearity/TLLA | LMW
| LOLA | LPOP | LSB | MLP | MoRe | MSFP |
NLCS | NSV | Overture | PAAR | PARIS | PC |
PLR | POS | PRUV | QBF | RCRA | REFINE |
ReMOTE | rv4rise | SCSC | SMT | SoMLMFM |
SR | SYNT | TERMGRAPH | Tetrapod | ThEdu |
TLA | TYDI | UITP | UNIF | Vampire | VaVAS
| VDMW | VEMDP | VSTTE | WiL | WPTE |
WST

PROGRAM | AUTHORS | KEYWORDS | SLIDES

MLP ON WEDNESDAY, JULY 18TH

Days: next day all days

View: session overview talk overview side by side with
other conferences

09:00-10:30 Session 125G

CHAIR: Bruno Marnette
LOCATION: Blavatnik LT1

09:00 Viktor Kuncak
Opening and demos

ABSTRACT. Informal opening of the event: a
chance to start networking and ask for demos.

09:45 Earl Barr
Bimodal Software Engineering

ABSTRACT. Source code is bimodal: it combines
a formal algorithmic channel and a natural
language channel of identifiers and comments. To
date, most work has focused exclusively on a
single channel. This is a missed
opportunity because the two channels interact:
 the natural language often explains
or summarizes the algorithmic channel, so
information in one channel can be used to
improve analyses of the other channel. A
canonical bimodal fact is identifier named “secret”
(NL channel) printed to the console (AL channel).
 To exploit such bimodal facts, one must
overcome two challenges: find cross-channel
synchronisation points and handle noise in the
form of ambiguity in the NL channel and

MLP on Wednesday, July 18th https://easychair.org/smart-program/FLoC2018...

1 of 5 10/21/18, 4:51 PM

imprecision in the AL channel. Thus, bimodality is
a natural fit for machine learning. I will present
RefiNym, a bimodal analysis that models code
with *name-flows*, a dataflow graph augmented to
track identifier names. Conceptual types are
logically different types that do not always coincide
with program types. Passwords and URLs are
example conceptual types that can share the
program type String. RefiNym is an unsupervised
method that mines a lattice of conceptual types
from name-flows and reifies those conceptual
types into distinct nominal types. For the String
type, we show that RefiNym minimises co-
occurrence of disparate conceptual types in the
same scope by 42%, thereby making it harder for
a developer to inadvertently introduce an
unintended flow.

10:30-11:00 Coffee Break

11:00-12:30 Session 127G

CHAIR: Viktor Kuncak
LOCATION: Blavatnik LT1

11:00 Jules Villard
Static Analysis for Developer Efficiency with
Infer

ABSTRACT. Infer is an open-source static
analysis tool for Java, C, C++, and Objective-C.
Infer has been successfully deployed at
Facebook, where it identifies hundreds of potential
bugs per month in mobile apps and backend
code. Infer uses AI (Abstract Interpretation) and
ML (more precisely the OCaml implementation) to
analyse source code. This talk will present infer
and attempt to draw bridges between infer and
other AI/ML techniques.

11:45 Liam Atkinson
Learning to Type

ABSTRACT. JavaScript developers enjoy the
freedom of not having to specify types in their
source code, but JavaScript is also notoriously
harder to refactor or debug than a statically typed
language. Type systems such as FlowType or
TypeScript have been designed to extend JavaScript
but adding type annotations to an existing code base
can be a laborious task. In this paper, we present a
Deep Learning system able to facilitate this process
by accurately suggesting probable type annotations
to all the relevant nodes of a program.

We generate our training set using runtime
information, observing the types of various
expressions during their execution. We represent
programs as graphs using abstract syntax trees
enriched with string information (e.g. variable
names) and over 90 additional types of edges,
encoding scope information, data flow, and the
relative position of different nodes. We then feed
these graphs into a tailored neural network

MLP on Wednesday, July 18th https://easychair.org/smart-program/FLoC2018...

2 of 5 10/21/18, 4:51 PM

architecture designed to propagate information
efficiently across edges, support multiple edge
types, and pay attention to different edges in
different contexts. We finally use this attention
mechanism to explain back to the user what drove
each prediction.

Our experiments show that a good accuracy can be
obtained with a relatively small amount of training
data, suggesting that applying Deep Learning to the
analysis of programs is somewhat easier than
classical applications, where large amounts of
training data are usually required.

12:30-14:00 Lunch Break

14:00-15:30 Session 128G

CHAIR: Bruno Marnette
LOCATION: Blavatnik LT1

14:00 Rishabh Singh
Neural Meta Program Synthesis

ABSTRACT. The key to attaining general artificial
intelligence is to develop architectures that are capable of
learning complex algorithmic behaviors modeled as programs.
The ability to learn programs can allow these architectures to
learn to compose high-level abstractions that can lead to many
benefits: i) enable neural architectures to perform more
complex tasks, ii) learn interpretable representations
(programs which can be analyzed, debugged, or modified),
and iii) better generalization to new inputs (like algorithms). In
this talk, I will present some of our recent work in developing
neural architectures for learning programs from examples, and
also briefly discuss other applications such as program repair
and fuzzing that can benefit from such neural program
representations.

14:45 Martin Vechev
Learning to Analyze Programs at Scale

ABSTRACT. I will present two new results on
machine learning-based program analysis. The first
direction involves learning static analyzers from a
given dataset of programs and is based on counter-
example guided synthesis, decision tree learning and
adversarial perturbations. The second direction
involves learning rules that pinpoint program issues
(e.g., security violations), and is based on learning
from large datasets of program changes by using
semantic abstractions and hierarchical clustering. In
both cases, I will show the methods successfully found
issues missed by state-of-the-art, manually crafted
systems.

15:30-16:00 Coffee Break

16:00-18:00 Session 130F

CHAIR: Bruno Marnette
LOCATION: Blavatnik LT1

16:00 Michael Pradel
DeepBugs: A Learning Approach to Name-
based Bug Detection

MLP on Wednesday, July 18th https://easychair.org/smart-program/FLoC2018...

3 of 5 10/21/18, 4:51 PM

ABSTRACT. Natural language elements in source
code, e.g., the names of variables and functions,
convey useful information. However, most existing
bug detection tools ignore this information and
therefore miss some classes of bugs. The few
existing name-based bug detection approaches
reason about names on a syntactic level and rely
on manually designed and tuned algorithms to
detect bugs. This talk presents DeepBugs, a
learning approach to name-based bug detection,
which reasons about names based on a semantic
representation and which automatically learns bug
detectors instead of manually writing them. We
formulate bug detection as a binary classification
problem and train a classifier that distinguishes
correct from incorrect code. To address the
challenge that effectively learning a bug detector
requires examples of both correct and incorrect
code, we create likely incorrect code examples
from an existing corpus of code through simple
code transformations. A novel insight learned from
our work is that learning from artificially seeded
bugs yields bug detectors that are effective at
finding bugs in real-world code. We implement our
idea into a framework for learning-based and
name-based bug detection. Three bug detectors
built on top of the framework detect accidentally
swapped function arguments, incorrect binary
operators, and incorrect operands in binary
operations. Applying the approach to a corpus of
150,000 JavaScript files yields bug detectors that
have a high accuracy (between 89% and 95%),
are very efficient (less than 20 milliseconds per
analyzed file), and reveal 102 programming
mistakes (with 68% true positive rate) in real-world
code.

16:45 Ian Wright, Jean Helie and Albert Ziegler
Measuring software development productivity:
a machine learning approach
SPEAKER: Ian Wright

ABSTRACT. We apply machine learning to
version control data to measure software
development productivity. Our models measure
both the quantity and quality of produced code.
Quantity is defined by a model that predicts the
labor hours supplied by the `standard coder’ to
make any code change, and quality is defined by
a model that predicts the distribution of different
kinds of problems identified by a static code
analysis tool.

17:15 Ezra Winston, Bhuwan Dhingra, Kathryn Mazaitis,
Graham Neubig and William Cohen
Answering Cloze-style Software Questions
Using Stack Overflow
SPEAKER: Ezra Winston

ABSTRACT. Modern Question Answering (QA)

MLP on Wednesday, July 18th https://easychair.org/smart-program/FLoC2018...

4 of 5 10/21/18, 4:51 PM

systems rely on both knowledge bases (KBs) and
unstructured text corpora as sources for their
answers. KBs, when available, generally offer
more precise answers than unstructured text.
However, in specialized domains such as software
engineering, QA requires deep domain expertise
and KBs are often lacking. In this paper we tackle
such specialized QA by using both text and semi-
structured knowledge, in the form of a corpus of
entity-labeled documents. We propose CASE, a
hybrid of an RNN language model and an entity
co-occurrence model, where the entity co-
occurrence model is learned from the entity-
labeled corpus. On QUASAR-S, a dataset derived
from Stack Overflow consisting of Cloze (fill-in-
the-blank) software questions and a corpus of
tagged posts, CASE shows large accuracy gains
over strong baselines.

19:15-21:30 Workshops dinner at Magdalen College

Workshops dinner at Magdalen College. Drinks reception
from 7.15pm, to be seated by 7:45 (pre-booking via FLoC
registration system required; guests welcome).

LOCATION: Magdalen College

Disclaimer | Powered by EasyChair Smart Program

MLP on Wednesday, July 18th https://easychair.org/smart-program/FLoC2018...

5 of 5 10/21/18, 4:51 PM

