
Purity Analysis:
An Abstract Interpretation Formulation

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani

Microsoft Research, India.
t-rakand,grama,kapilv@microsoft.com

Abstract. Salcianu and Rinard present a compositional purity analysis
that computes a summary for every procedure describing its side-effects.
In this paper, we formalize a generalization of this analysis as an abstract
interpretation, present several optimizations and an empirical evaluation
showing the value of these optimizations. The Salcianu-Rinard analysis
makes use of abstract heap graphs, similar to various heap analyses and
computes a shape graph at every program point of an analyzed proce-
dure. The key to our formalization is to view the shape graphs of the
analysis as an abstract state transformer rather than as a set of abstract
states: the concretization of a shape graph is a function that maps a
concrete state to a set of concrete states. The abstract interpretation
formulation leads to a better understanding of the algorithm. More im-
portantly, it makes it easier to change and extend the basic algorithm,
while guaranteeing correctness, as illustrated by our optimizations.

1 Introduction

Compositional or modular analysis [6] is a key technique for scaling static anal-
ysis to large programs. Our interest is in techniques that analyze a procedure
in isolation, using pre-computed summaries for called procedures, computing a
summary for the analyzed procedure. Such analyses are widely used and have
been found to scale well. In this paper we consider an analysis presented by
Salcianu and Rinard [17], based on a pointer analysis due to Whaley and Ri-
nard [19], which we will refer to the WSR analysis. Though referred to as a
purity analysis, it is a more general-purpose analysis that computes a summary
for every procedure, in the presence of dynamic memory allocation, describing
its side-effects. This is one of the few heap analyses that is capable of treating
procedures in a compositional fashion.

WSR analysis is interesting for several reasons. Salcianu and Rinard present
an application of the analysis to classify a procedure as pure or impure, where
a procedure is impure if its execution can potentially modify pre-existing state.
Increasingly, new language constructs (such as iterators, parallel looping con-
structs and SQL-like query operators) are realized as higher-order library pro-
cedures with procedural parameters that are expected to be side-effect free. Pu-
rity checkers can serve as verification/bug-finding tools to check usage of these
constructs. Our interest in this analysis stems from our use of an extension of

this analysis to statically verify the correctness of the use of speculative par-
allelism [13]. WSR analysis can also help more sophisticated verification tools,
such as [8], which use simpler analyses to identify procedure calls that do not
affect properties of interest to the verifier and can be abstracted away.

However, we felt the need for various extensions of the WSR analysis. A key
motivation was efficiency. Real-world applications make use of large libraries
such as the base class libraries in .NET. While the WSR analysis is reasonably
efficient, we find that it still does not scale to such libraries. Another motivation
is increased functionality: our checker for speculative parallelism [13] needs some
extra information (must-write sets) beyond that computed by the analysis. A
final motivating factor is better precision: the WSR analysis declares “pure”
procedures that use idioms like lazy initialization and caching as impure.

The desire for these extensions leads us to formulate, in this paper, the WSR
analysis as an abstract interpretation, to simplify reasoning about the soundness
of these extensions. The formulation of the WSR analysis as an abstract inter-
pretation is, in fact, mentioned as an open problem by Salcianu ([16], page 128).

The WSR analysis makes use of abstract heap graphs, similar to various heap
analyses and computes a shape graph gu at every program point u of an ana-
lyzed procedure. The key to our abstract interpretation formulation, however, is
to view a shape graph utilized by the analysis as an abstract state transformer
rather than as a set of abstract states: thus, the concretization of a shape graph
is a function that maps a concrete state to a set of concrete states. Specifically,
if the graph computed at program point u is gu, then for any concrete state σ,
γ(gu)(σ) conservatively approximates the set of states that can arise at program
point u in the execution of the procedure on an initial state σ. In our formal-
ization, we present a concrete semantics in the style of the functional approach
to interprocedural analysis presented by Sharir and Pnueli. The WSR analysis
can then be seen as a natural abstract interpretation of this concrete semantics.

We then present three optimizations viz. duplicate node merging, summary
merging, and safe node elimination, that improve the efficiency of WSR analysis.
We use the abstract interpretation formulation to show that these optimizations
are sound. Our experiments show that these optimizations significantly reduce
both analysis time (sometimes by two orders of magnitude or more) and memory
consumption, allowing the analysis to scale to large programs.

2 The Language, Concrete Semantics, And The Problem

Syntax A program consists of a set of procedures. A procedure P consists of
a control-flow graph, with an entry vertex entry(P) and an exit vertex exit(P).
The entry vertex has no predecessor and the exit vertex has no successor. Every
edge of the control-flow graph is labelled by a primitive statement. The set of

primitive statements are shown in Fig. 1. We use u
S→ v to indicate an edge in

the control-flow graph from vertex u to vertex v labelled by statement S.
Concrete Semantics Domain Let Vars denote the set of variable names

used in the program, partitioned into the following disjoint sets: the set of global

Statement S Concrete semantics [[S]]c(V,E, σ)

v1 = v2 {(V,E, σ[v1 7→ σ(v2)]}
v = new C {(V ∪ {n},E ∪ {n} × Fields × {null}, σ[v 7→ n]) | n ∈ Nc \ V}
v1.f = v2 {(V, {〈u, l, v〉 ∈ E | u 6= σ(v1) ∨ l 6= f} ∪ {〈σ(v1), f, σ(v2)〉}, σ)}
v1 = v2.f {(V,E, σ[v1 7→ n]) | 〈σ(v2), f, n〉 ∈ E}
Call P (v1, · · · , vk) Semantics defined below

Fig. 1. Primitive statements and their concrete semantics

variables Globals, the set of local variables Locals (assumed to be the same for
every procedure), and the set of formal parameter variables Params (assumed
to be the same for every procedure). Let Fields denote the set of field names
used in the program. We use a simple language in which all variables and fields
are of pointer type. We use a fairly common representation of the concrete state
as a concrete (points-to or shape) graph.

Let Nc be an unbounded set of locations used for dynamically allocated
objects. A concrete state or points-to graph g ∈ Gc is a triple (V,E, σ), where
V ⊆ Nc represents the set of objects in the heap, E ⊆ V × Fields × V (a set of
labelled edges) represents values of pointer fields in heap objects, and σ ∈ Σc =
Vars 7→ V represents the values of program variables. In particular, (u, f, v) ∈ E
iff the f field of the object u points to object v. We assume Nc includes a special
element null . Variables and fields of new objects are initialized to null .

Let Fc = Gc 7→ 2Gc be the set of functions that map a concrete state to
a set of concrete states. We define a partial order vc on Fc as follows: fa vc
fb iff ∀g ∈ Gc.fa(g) ⊆ fb(g). Let tc denote the corresponding least upper bound
(join) operation defined by: fa tc fb = λg.fa(g) ∪ fb(g). For any f ∈ Fc, we
define f : 2Gc 7→ 2Gc by: f(G) = ∪g∈Gf(g). We define the “composition” of two
functions in Fc as follows: fa ◦ fb = λg.fb(fa(g)).

Concrete Semantics Every primitive statement S has a semantics [[S]]c ∈
Fc, as shown in Fig. 1. Every primitive statement has a label ` which is not
used in the concrete semantics and is, hence, omitted from the figure. The exe-
cution of most statements transforms a concrete state to another concrete state,
but the signature allows us to model non-determinism (e.g., dynamic memory
allocation can return any unallocated object). The signature also allows us to
model execution errors such as null-pointer dereference, though the semantics
presented simplifies error handling by treating null as just a special object.

We now define a concrete summary semantics [[P]]c ∈ Fc for every procedure
P . The semantic function [[P]]c maps every concrete state gc to the set of concrete
states that the execution of P with initial state gc can produce.

We introduce a new variable ϕu for every vertex in the control-flow graph (of
any procedure) and a new variable ϕu,v for every edge u→ v in the control-flow
graph. The semantics is defined as the least fixed point of the following set of
equations. The value of ϕu in the least fixed point is a function that maps any
concrete state g to the set of concrete states that arise at program point u when
the procedure containing u is executed with an initial state g. Similarly, ϕu,v

captures the states after the execution of the statement labelling edge u→ v.

ϕv = λg.{g} v is an entry vertex (1)

ϕv =
⊔
c{ϕu,v | u→ v} v is not an entry vertex (2)

ϕu,v = ϕu ◦ [[S]]c where u
S→ v and S is not a call-stmt (3)

ϕu,v = ϕu ◦ CallReturnS(ϕexit(Q)) where u
S→ v, S is a call to proc Q (4)

The first three equations are straightforward. Consider Eq. 4, corresponding to a
call to a procedure Q. The value of ϕexit(Q) summarizes the effect of the execution
of the whole procedure Q. In the absence of local variables and parameters, we
can define the right-hand-side of the equation to be simply ϕu ◦ ϕexit(Q).

The function CallReturnS(f), defined below, first initializes values of all local
variables (to null) and formal parameters (to the values of corresponding actual
parameters), using an auxiliary function pushS . It then applies f , capturing the
procedure call’s effect. Finally, the original values of local variables and param-
eters (of the calling procedure) are restored from the state preceding the call,
using a function popS . For simplicity, we omit return values from our language.

Let Param(i) denote the i-the formal parameter. Let S be a procedure call
statement “Call Q(a1,...,ak)”. We define the functions pushS ∈ Σc 7→ Σc,
popS ∈ Σc ×Σc 7→ Σc, and CallReturnS as follows:

pushS(σ) = λv. v ∈ Globals → σ(v) | v ∈ Locals → null | v = Param(i)→ σ(ai)

popS(σ, σ′) = λv. v ∈ Globals → σ′(v) | v ∈ Locals ∪ Params → σ(v)

CallReturnS(f) = λ(V,E, σ).{(V′,E′, popS(σ, σ′)) | (V′,E′, σ′) ∈ f(V,E, pushS(σ))}
We define [[P]]c to be the value of ϕexit(P) in the least fixed point of equations

(1)-(4), which exists by Tarski’s fixed point theorem. Specifically, let VE denote
the set of vertices and edges in the control flow graph of a program. The above
equations can be expressed as a single equation ϕ = F \(ϕ), where F \ is a
monotonic function from the complete lattice VE 7→ Fc to itself. Hence, F \ has
a least fixed point.

We note that the above collection of equations is similar to those used in
Sharir and Pnueli’s functional approach to interprocedural analysis [18] (ex-
tended by Knoop and Steffen [11]), with the difference that we are defining a
concrete semantics here, while [18] is focused on abstract analyses. The equations
are a simple functional version of the standard equations for defining a collecting
semantics, with the difference that we are simultaneously computing a collecting
semantics for every possible initial states of the procedure’s execution.

The goal of the analysis is to compute an approximation of the set of quan-
tities [[P]]c using abstract interpretation.

3 The WSR Analysis As An Abstract Interpretation

3.1 Transformer Graphs: An Informal Overview

The WSR analysis uses a single abstract graph to represent a set of concrete
states, similar to several shape and pointer analyses. The distinguishing aspect

of the WSR analysis, however, is its extension of the graph based representation
to represent (abstractions of) elements belonging to the functional domain Fc.
We now illustrate, using an example, how the graph representation is extended
to represent an element of Fc = Gc 7→ 2Gc . Consider the example procedure P
shown in Fig. 2(a).

P (x, y) {
[1] t = new ();

[2] x.next = t;

[3] t.next = y;

[4] retval = y.next;

}
(a) Example procedure P (c) An input graph g1 (e) Input graph g2

(b) Summary graph τ (d) Output graph g′1 = τ〈g1〉 (f) Output graph g′2 = τ〈g2〉

Fig. 2. Illustration of transformer graphs.

The summary graph τ computed for this procedure is shown in Fig. 2(b). (We
omit the null node from the figures to keep them simple.) Vertices in a summary
graph are of two types: internal (shown as circles with a solid outline) and
external nodes (shown as circles with a dashed outline). Internal nodes represent
new heap objects created during the execution of the procedure. E.g., vertex n0
is an internal node and represents the object allocated in line 1. External nodes,
in many cases, represent objects that exist in the heap when the procedure is
invoked. In our example, n1, n2, and n3 are external nodes.

Edges in the graph are also classified into internal and external edges, shown
as solid and dashed edges respectively. The edges n1 → n0 and n0 → n2 are
internal edges. They represent updates performed by the procedure (i.e., new
points-to edges added by the procedure’s execution) in lines 2 and 3. Edge n2 →
n3 is an external edge created by the dereference “y.next” in line 4. This edge
helps identify the node(s) that the external node n3 represents: namely, the
objects obtained by dereferencing the next field of objects represented by n2.

The summary graph τ indicates how the execution of procedure P transforms
an initial concrete state. Specifically, consider an invocation of procedure P in
an initial state given by graph g1 shown in Fig. 2(c). The summary graph helps
construct a transformed graph g′1 = τ〈g1〉, corresponding to the state after the
procedure’s execution (shown in Fig. 2(d)) by identifying a set of new nodes and
edges that must be added to g1. (The underlying analysis performs no strong
updates on the heap and, hence, never removes nodes or edges from the graph).
We add a new vertex to g1 for every internal node n in the summary graph.

Every external node n in the summary graph represents a set of vertices η(n) in
g′1. (We will explain later how the function η is determined by τ .) Every internal

edge u
h→ v in the summary graph identifies a set of edges {u′ h→ v′ | u′ ∈

η(u), v′ ∈ η(v)} that must be added to the graph g′1. In our example, n1, n2 and
n3 represent, respectively, {o1}, {o2} and {o3}. This produces the graph shown
in Fig. 2(d), which is an abstract graph representing a set of concrete states. The
primed variables in the summary graph represent the (final) values of variables,
and are used to determine the values of variables in the output graph.

An important aspect of the summary computed by the WSR analysis is that
it can be used even in the presence of potential aliases in the input (or cut-
points [14]). Consider the input state g2 shown in Fig. 2(e), in which parameters
x and y point to the same object u1. Our earlier description of how to construct
the output graph still applies in this context. The main tricky aspect here is in
correctly dealing with aliasing in the input. In the concrete execution, the update
to x.next in line 2 updates the next field of object u1. The aliasing between x

and y means that y.next will evaluate to n0 in line 4. Thus, in the concrete exe-
cution retval will point to the newly created object n0 at the end of procedure
execution, rather than u2. This complication is dealt with in the definition of
the mapping function η. For the example input g2, the external node n3 of the
summary graph represents the set of nodes {u2, n0}. (This is an imprecise, but
sound, treatment of the aliasing situation.) The rest of the construction applies
just as before. This yields the abstract graph shown in Fig. 2(f).

More generally, an external node in the summary graph acts as a proxy for
a set of vertices in the final output graph to be constructed, which may include
nodes that exist in the input graph as well as new nodes added to the input
graph (which themselves correspond to internal nodes of the summary graph).

We now define the transformer graph domain formally.

3.2 The Abstract Domain

The Abstract Graph Domain We utilize a fairly standard abstract shape
(or points-to) graph to represent a set of concrete states. Our formulation is
parameterized by a given set Na, the universal set of all abstract graph nodes.
An abstract shape graph g ∈ Ga is a triple (V,E, σ), where V ⊆ Na represents
the set of abstract heap objects, E ⊆ V × Fields × V (a set of labelled edges)
represents possible values of pointer fields in the abstract heap objects, and
σ ∈ Vars 7→ 2V is a map representing the possible values of program variables.

Given a concrete graph g1 = 〈V1,E1, σ1〉 and an abstract graph g2 = 〈V2,E2, σ2〉
we say that g1 can be embedded into g2, denoted g1 � g2, if there exists a func-
tion h : V1 7→ V2 such that

〈x, f, y〉 ∈ E1 ⇒ 〈h(x), f, h(y)〉 ∈ E2 (5)

∀v ∈ Vars. σ2(v) ⊇ {h(σ1(v))} (6)

The concretization γG(ga) of an abstract graph ga is defined to be the set of
all concrete graphs that can be embedded into ga:

γG(ga) = {gc ∈ Gc | gc � ga}

The Abstract Functional Domain. We now define the domain of graphs
used to represent summary functions. A transformer graph τ ∈ Fa is a tuple
(EV,EE, π, IV, IE, σ), where EV ⊆ Na is the set of external vertices, IV ⊆ Na
is the set of internal vertices, EE ⊆ V × Fields × V is the set of external
edges, where V = EV ∪ IV, IE ⊆ V × Fields × V is the set of internal edges,
π ∈ (Params ∪Globals) 7→ 2V is a map representing the values of parameters
and global variables in the initial state, and σ ∈ Vars 7→ 2V is a map representing
the possible values of program variables in the transformed state. Furthermore,
a transformer graph τ is required to satisfy the following constraints:

〈x, f, y〉 ∈ EE =⇒ ∃u ∈ range(π).x is reachable from u via (IE ∪ EE) edges

y ∈ EV =⇒ y ∈ range(π) ∨ ∃〈x, f, y〉 ∈ EE

Given a transformer graph τ = (EV,EE, π, IV, IE, σ), a node u is said to be a
parameter node if u ∈ range(π). A node u is said to be an escaping node if it
is reachable from some parameter node via a path of zero or more edges (either
internal or external). Let Escaping(τ) denote the set of escaping nodes in τ .
(Note that an abstract graph can be treated as a transformer graph in which all
vertices and edges are internal with π being λx.{}.)

We now define the concretization function γT : Fa → Fc. Given a transformer
graph τ = (EV,EE, π, IV, IE, σ) and a concrete graph gc = (Vc,Ec, σc), we need
to construct a graph representing the transformation of gc by τ . As explained
earlier, every external node n ∈ EV in the transformer graph represents a set of
vertices in the transformed graph. We now define a function η[[τ, gc]] : (IV∪EV) 7→
2(IV∪Vc) that maps each node in the transformer graph τ to a set of concrete nodes
(in gc) as well as internal nodes (in τ) as the least solution to the following set
of constraints over variable µ.

v ∈ IV⇒ v ∈ µ(v) (7)

v ∈ π(X)⇒ σc(X) ∈ µ(v) (8)

〈u, f, v〉 ∈ EE, u′ ∈ µ(u), 〈u′, f, v′〉 ∈ Ec ⇒ v′ ∈ µ(v) (9)

〈u, f, v〉 ∈ EE, µ(u) ∩ µ(u′) 6= ∅, 〈u′, f, v′〉 ∈ IE⇒ µ(v′) ⊆ µ(v) (10)

Explanation of the constraints: An internal node represents itself (Eq. 7). An
external node labelled by a parameter X represents the node pointed to by X in
the input state gc (Eq. 8). An external edge 〈u, f, v〉 indicates that v represents
any f -successor v′ of any node u′ represented by u in the input state (Eq. 9).
However, with an external edge 〈u, f, v〉, we must also account for updates to
the f field of the objects represented by u during the procedure execution, ie,
the transformation represented by τ , via aliases (as illustrated by the example
in Fig. 2(e)). Eq. 10 handles this. The precondition identifies u′ as a potential

alias for u (for the given input graph), and identifies updates performed on the
f field of (nodes represented by) u′.

Given mapping function η, we define the transformed abstract graph τ〈gc〉
as 〈V′,E′, σ′〉, where

V′ = Vc ∪ IV (11)

E′ = Ec ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE, v1 ∈ η(u), v2 ∈ η(v)} (12)

σ′ = λx.
⋃

u∈σ(x)

η(u) (13)

The transformed graph is an abstract graph that represents all concrete
graphs that can be embedded in the abstract graph. Thus, we define the con-
cretization function as below:

γT (τa) = λgc.γG(τa〈gc〉).

Our abstract interpretation formulation uses only a concretization function.
There is no abstraction function αT . While this form is less common, it is suffi-
cient to establish the soundness of the analysis, as explained in [5]. Specifically,
a concrete value f ∈ Fc is correctly represented by an abstract value τ ∈ Fa, de-
noted f ∼ τ , iff f vc γT (τ). We seek to compute an abstract value that correctly
represents the least fixed point of the concrete semantic equations.

Containment Ordering. A natural “precision ordering” exists on Fa, where
τ1 is said to be more precise than τ2 iff γT (τ1) vc γT (τ2). However, this ordering is
not of immediate interest to us. (It is not even a partial order, and is hard to work
with computationally.) We utilize a stricter ordering in our abstract fixed point
computation. We define a relation vco on Fa by: (EV1,EE1, π1, IV1, IE1, σ1) vco
(EV2,EE2, π2, IV2, IE2, σ2) iff EV1 ⊆ EV2, EE1 ⊆ EE2, ∀x.π1(x) ⊆ π2(x), IV1 ⊆
IV2, IE1 ⊆ IE2, and ∀x.σ1(x) ⊆ σ2(x).

Lemma 1. vco is a partial-order on Fa with a join operation, denoted tco.
Further, γT is monotonic with respect to vco: τ1 vco τ2 ⇒ γT (τ1) vc γT (τ2).

3.3 The Abstract Semantics

Our goal is to approximate the least fixed point computation of the concrete
semantics equations 1-4. We do this by utilizing an analogous set of abstract
semantics equations shown below. First, we fix the set Na of abstract nodes.
Recall that the domain Fa defined earlier is parameterized by this set. The WSR
algorithm relies on an “allocation site” based merging strategy for bounding the
size of the transformer graphs. We utilize the labels attached to statements as
allocation-site identifiers. Let Labels denote the set of statement labels in the
given program. We define Na to be {nx | x ∈ Labels ∪ Params ∪Globals}.

We first introduce a variable ϑu for every vertex u in the control-flow graph
(denoting the abstract value at a program point u), and a variable ϑu,v for every

Statement S Abstract semantics [[S]]aτ where τ = (EV,EE, π, IV, IE, σ)

v1 = v2 (EV,EE, π, IV, IE, σ[v1 7→ σ(v2)])

` : v = new C (EV,EE, π, IV ∪ {n`}, IE ∪ {n`} × Fields × {null}, σ[v 7→ {n`}])
v1.f = v2 (EV,EE, π, IV, IE ∪ σ(v1)× {f} × σ(v2), σ)

` : v1 = v2.f let A = {n | ∃n1 ∈ σ(v2), 〈n1 , f ,n〉 ∈ IE} in
let B = σ(v2) ∩ Escaping(τ) in
if (B = ∅)
then (EV,EE, π, IV, IE, σ[v1 7→ A])
else (EV ∪ {n`},EE ∪B × {f} × {n`}, π, IV, IE, σ[v 7→ A ∪ {n`}])

Fig. 3. Abstract semantics of primitive instructions.

edge u → v in the control-flow graph (denoting the abstract value after the
execution of the statement in edge u→ v).

ϑv = ID v is an entry vertex (14)

ϑv = tco{ϑu,v | u
S→ v} v is not an entry vertex (15)

ϑu,v = [[S]]a(ϑu) where u
S→ v,S is not a call-stmt (16)

ϑu,v = ϑexit(Q)〈〈ϑu〉〉Sa where u
S→ v,S is a call to Q (17)

Here, ID is a transformer graph consisting of a external vertex for each global
variable and each parameter (representing the identity function). Formally, ID =
(EV, ∅, π, ∅, ∅, π), where EV = {nx | x ∈ Params ∪ Globals} and π = λv. v ∈
Params ∪ Globals → nv | v ∈ Locals → null . The abstract semantics [[S]]a of
any primitive statement S, other than a procedure call, is shown in Figure 3.
The abstract semantics of a procedure call is captured by an operator τ1〈〈τ2〉〉Sa ,
which we will define soon.

The abstract semantics of the first three statements are straightforward. The
treatment of the dereference v2.f in the last statement is more involved. Here,
the simpler case is where the dereferenced object is a non-escaping object: in this
case, we can directly determine the possible values of v2.f from the information
computed by the local analysis of the procedure. This is handled by the true
branch of the conditional statement. The case of escaping objects is handled by
the false branch. In this case, in addition to the possible values of v2.f identified
by the local analysis, we must account for two sources of values unknown to
the local analysis. The first possibility is that the dereferenced object is a pre-
existing object (in the input state) with a pre-existing value for the f field. The
second possibility is that the dereferenced object may have aliases unknown to
the local analysis via which its f field may have been updated during the proce-
dure’s execution. We create an appropriate external node (with a corresponding
incoming external edge) that serves as a proxy for these unknown values.

We now consider the abstract semantics of a procedure call statement. Let
τr = (EVr,EEr, πr, IVr, IEr, σr) be the transformer graph in the caller before a
call statement S to Q and let τe = (EVe,EEe, πe, IVe, IEe, σe) be the abstract
summary of Q. We now show how to construct the graph τe〈〈τr〉〉Sa representing

the abstract graph at the point after the method call. This operation is an
extension of the operation τ〈gc〉 used earlier to show how τ transforms a concrete
state gc into one of several concrete states.

We first utilize an auxiliary transformer τe〈〈τr, η〉〉 that takes an extra pa-
rameter η that maps nodes of τe to a set of nodes in τe and τr. (As explained
above, a node u in τe acts as a proxy for a set of vertices in a particular callsite
and η(u) identifies this set.) Given η, define η̂ as λX.

⋃
u∈X η(u). We then define

τe〈〈τr, η〉〉 to be (EV′,EE′, π′, IV′, IE′, σ′) where

V′ = (IVr ∪ EVr) ∪ η̂(IVe ∪ EVe) (18)

IV′ = V′ ∩ (IVr ∪ IVe) (19)

EV′ = V′ ∩ (EVr ∪ EVe) (20)

IE′ = IEr ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IEe, v1 ∈ η(u), v2 ∈ η(v)} (21)

EE′ = EEr ∪ {〈u′, f, v〉 | 〈u, f, v〉 ∈ EEe, u
′ ∈ η(u), escapes(u′)} (22)

π′ = πr (23)

σ′ = λx. x ∈ Globals → η̂(σe(x)) | x ∈ Locals ∪ Params → σr(x) (24)

escapes(v) ≡ ∃u ∈ range(π′).v is reachable from u via IE′ ∪ EE′ edges (25)

The predicate “escapes(u′)” used in the above definition is recursively depen-
dent on the graph τ ′ being constructed: it checks if u′ is reachable from any of
the parameter nodes in the graph being constructed. Thus, this leads to an iter-
ative process for adding edges to the graph being constructed, as more escaping
nodes are identified.

We now show how the node mapping function η[[τe, τr,]] is determined, given
the transformers τe and τr. The function η is defined to be the least fixed point
of the set of following constraints over the variable µ. (Here, µ1 is said to be
less than µ2 iff µ1(u) ⊆ µ2(u) for all u.) Let ai denote the actual argument
corresponding to the formal argument Param(i).

x ∈ IVe ⇒ x ∈ µ(x) (26)

x ∈ πe(Param(i))⇒ σr(ai) ⊆ µ(x) (27)

x ∈ πe(v) ∧ v ∈ Globals ⇒ σr(v) ⊆ µ(x) (28)

〈u, f, v〉 ∈ EEe, u
′ ∈ µ(u), 〈u′, f, v′〉 ∈ IEr ⇒ v′ ∈ µ(v) (29)

〈u, f, v〉 ∈ EEe, µ(u) ∩ µ(u′) 6= ∅, 〈u′, f, v′〉 ∈ IEe ⇒ µ(v′) ⊆ µ(v) (30)

〈u, f, v〉 ∈ EEe, µ(u) ∩ Escaping(τe〈〈τr, µ〉〉) 6= ∅ ⇒ v ∈ µ(v) (31)

In WSR analysis, rule (30) has one more pre-condition, namely (u 6= u′ ∨ u ∈
EVe). This extra condition may result in a more precise node mapping function
but requires a similar change to the definition of the concretization function γT .

Abstract Fixed Point Computation. The collection of equations 14-17
can be viewed as a single equation ϑ = F](ϑ), where F] is a function from
VE 7→ Fa to itself. Let ⊥ denote λx.({}, {}, λv.{}, {}, {}, λv.{}). The analysis

iteratively computes the sequence of values F]
i
(⊥) and terminates when F]

i
(⊥)

= F]
i+1

(⊥). We define [[P]]a (the summary for a procedure P) to be the value
of ϕexit(P) in the final solution.

Correctness and Termination. With this formulation, correctness and
termination of the analysis follow in the standard way. Correctness follows by
establishing that F] is a sound approximation of F \, which follows from the
following lemma that the corresponding components of F] are sound approxi-
mations of the corresponding components of F \. As usual, we say that a concrete
value f ∈ Fc is correctly represented by an abstract value τ ∈ Fa, denoted f ∼ τ ,
iff f vc γT (τ).

Lemma 2. (a) λg.{g} ∼ ID
(b) For every primitive statement S (other than a procedure call), [[S]]a is a sound
approximation of [[S]]c: if f ∼ τ , then f ◦ [[S]]c ∼ [[S]]a(τ).
(c) tco is a sound approximation of tc: if f1 ∼ τ1 and f2 ∼ τ2, then (f1tc f2) ∼
(τ1 tco τ2).
(d) if f1 ∼ τ1 and f2 ∼ τ2, then f2 ◦ CallReturnS(f1) ∼ τ1〈〈τ2〉〉Sa .

Lemma 2 implies the following soundness theorem in the standard way (e.g., see
Proposition 4.3 of [5]).

Theorem 1. The computed procedure summaries are correct. (For every proce-
dure P, [[P]]c ∼ [[P]]a.)

Termination follows by establishing that F] is monotonic with respect to
v∗co, since Fa has only finite height vco-chains.

4 Extensions for Node Merging

In this section we describe an extension to the WSR analysis that allows nodes
in the transformer graph to be merged together at arbitrary points during the
analysis, as an efficiency heuristic, without sacrificing correctness or termination.

4.1 The Basic Idea

Informally, node merging is an operation that replaces a set of nodes {n1, n2 . . . nm}
by a single node nrep such that any predecessor or successor of the nodes
n1, n2, . . . , nm becomes, respectively, a predecessor or successor of nrep. While
merging nodes seems like a natural heuristic for improving efficiency, it does in-
troduce some subtle issues and challenges. The intuition for merging nodes arises
from their use in the context of heap analyses where graphs represent sets of con-
crete states. However, in our context, graphs represent state transformers. We
now present some results that help establish the correctness of this optimization.

Transformer Graph Embedding. We now extend the notion of graph
embedding to transformer graphs. Given τ1 = (EV1,EE1, π1, IV1, IE1, σ1) and

τ2 = (EV2,EE2, π2, IV2, IE2, σ2), we say that τ1 � τ2 (τ1 can be embedded in τ2)
iff there exists a function h : (IV1 ∪ EV1) 7→ (IV2 ∪ EV2) such that:

x ∈ IV1 ⇒ h(x) ∈ IV2 (32)

x ∈ EV1 ⇒ h(x) ∈ EV2 (33)

〈x, f, y〉 ∈ IE1 ⇒ 〈h(x), f, h(y)〉 ∈ IE2 (34)

〈x, f, y〉 ∈ EE1 ⇒ 〈h(x), f, h(y)〉 ∈ EE2 (35)

∀v ∈ Vars. {h(x) | x ∈ σ1(v)} ⊆ σ2(v) (36)

∀v ∈ Vars. {h(x) | x ∈ π1(v)} ⊆ π2(v) (37)

We use τ1 �h τ2 to denote that the function h induces an embedding from τ1
to τ2. (Note that while this notion of embedding is similar to the one used in
TVLA, the one significant difference is that h is not required to be surjective.)

Node merging produces an embedding. Assume that we are given an equiv-
alence relation ' on the nodes of a transformer graph τ (such that no internal
nodes are equivalent to external nodes). We define the transformer graph τ/ '
to be the transformer graph obtained by replacing every node u by a unique
representative of its '-equivalence class in every component of τ .

Lemma 3. (a) � is a pre-order. (i.e., it is reflexive and transitive). (b) γT is
monotonic with respect to �: i.e., ∀τa, τb ∈ Fa.τa � τb ⇒ γT (τa) vc γT (τb). (c)
τ � (τ/ ').

Assume that we wish to replace a transformer graph τ by a graph τ/ ' at
some point during the analysis (perhaps by incorporating this into one of the
abstract operations). Our earlier correctness argument still remains valid (since
if f ∼ τ1 � τ2, then f ∼ τ2).

However, this optimization impacts the termination argument because we do
not have τ vco (τ/ '). Indeed, our initial implementation of the optimization
did not terminate for one program because the computation ended up with a
cycle of equivalent, but different, transformers (in the sense of having the same
concretization).

Informally, we get around this problem by refining the implementation to
ensure that once two nodes are chosen to be merged together, they are always
merged together in all subsequent steps. This approach guarantees termination.
However, formalizing this is non-trivial. In the sequel, we show how to enhance
the underlying domain to include an equivalence relation on nodes (representing
the nodes currently merged together) and update the transformers accordingly.
We then show how we can ensure termination.

4.2 Enhancing The Abstract Domain

Before we present a formal definition of the enhanced abstract domain, we briefly
discuss a few details pertaining to the representation of an equivalence relation
in our abstract domain. We represent an equivalence relation on Na (the set

of abstract nodes) using a function in Na 7→ Na that maps every node in an
equivalence class to the (unique) representative of the equivalence class. Say
there exists a total ordering (≤v) on the set of nodes in Na (for instance, if
n ∈ Na has an unique identifier id(n) ∈ N then the total ordering could be
defined as ∀n1, n2 ∈ Na, n1 ≤v n2 ⇐⇒ id(n1) ≤ id(n2)). Let maxv(N) denote
the largest element in N ⊆ Na w.r.t the total order ≤v. Given an equivalence
relation≡ onNa we define the function ξ : Na 7→ Na representing the equivalence
relation as

ξ(x) = max
v

({y | y ≡ x}) (38)

Note that, by the above definition, for every equivalence relation ≡ on Na there
exists a unique function ξ ∈ Na 7→ Na representing the equivalence relation. Let
P ⊆ Na 7→ Na be the set of functions representing the set of all equivalence
relations on Na. Given a function ξ ∈ P the equivalence relation it represents
(denote as ≡ξ) is defined as ∀x, y ∈ Na, x ≡ξ y ⇐⇒ ξ(x) = ξ(y). Let ≤p be
a binary relation on P defined by: ξ1 ≤p ξ2 iff the equivalence relation ≡ξ1 is a
refinement of (or subset of) the equivalence relation ≡ξ2 . For all ξ1, ξ2 ∈ P, let
ξ1 tp ξ2 be the function representing the equivalence relation on Na that is a
superset of ≡ξ1 and ≡ξ2 .

Lemma 4. ≤p is a partial order on P with the join operator tp (i.e., (P,≤p,tp)
is a join semi-lattice). The least element of (P,≤p) is ⊥P = λx.x.

Enhanced Abstract Domain. We define the enhanced abstract domain Fm
as the set of pairs (τ, ξ) ∈ Fa × P satisfying the following condition:

∀x ∈ Na, x ∈ (EV ∪ IV) =⇒ ξ(x) = x (39)

The above condition ensures that in every (τ, ξ) ∈ Fm, the vertices in τ are the
representatives of the equivalence classes of ≡ξ. Define a binary relation ≤m on
Fm as follows: (τ1, ξ1) ≤m (τ2, ξ2) iff ξ1 ≤p ξ2 and τ1 �ξ2 τ2.

We define the concretization function γM : Fm 7→ Fc as γM ((τ, ξ)) = γT (τ).

Lemma 5. (a) ≤m is a partial order on Fm with the join operator tm defined
as follows: (τ1, ξ1) tm (τ2, ξ2) = (apply(ξ1 tp ξ2, τ1 tco τ2), ξ1 tp ξ2). In other
words, (Fm,≤m,tm) is a join semi-lattice
(b) The least element of (Fm,≤m) is ⊥Fm

= (⊥Fa
,⊥P)

(c) γM is monotonic w.r.t ≤m.

Let apply : P × Fa 7→ Fa be the function that, given a transformer graph
τ ∈ Fa and a partition function ξ ∈ P, applies the partition function ξ on every
component of the transformer graph τ . Formally, if τ = (EV,EE, π, IV, IE, σ)

then, apply(ξ, τ) = (EVm,EEm, πm, IVm, IEm, σm) where,

IVm = {ξ(x) | x ∈ IV}
EVm = {ξ(x) | x ∈ EV}
EEm = {〈ξ(x), f, ξ(y)〉 | 〈x, f, y〉 ∈ EE}
IEm = {〈ξ(x), f, ξ(y)〉 | 〈x, f, y〉 ∈ IE}

πm(var) = {ξ(x) | x ∈ π(var)}
σm(var) = {ξ(x) | x ∈ σ(var)}

Enhanced Abstract Semantics We now discuss the enhanced abstract
semantics [[S]]m for all the statements in our language. For every primitive state-
ment S, [[S]]m is defined as follows:

[[S]]m((τ, ξ)) = (apply(ξ, [[S]]a(τ)), ξ)

The abstract semantics of a method call statement S of the form Call P (v1, v2, . . . , vk)
is captured by 〈〈〉〉Sm defined as follows. Let (τr, ξr) be the abstract state in the
caller at the program point before the call instruction S. Let (τe, ξe) be the
summary of callee.

(τe, ξe)〈〈(τr, ξr)〉〉Sm = (τ ′, ξr tp ξe) where,

τ ′ = apply(ξr tp ξe, τe〈〈τr〉〉Sa)

Given (τ, ξ) ∈ Fm and f ∈ Fc, let f ∼ (τ, ξ) denote that f is correctly
abstracted by (τ, ξ) i.e, f vc γM ((τ, ξ)).

Lemma 6. (a) λg.{g} ∼ ID
(b) For every primitive statement S (other than a procedure call), [[S]]m is a
sound approximation of [[S]]c: if f ∼ (τ, ξ), then f ◦ [[S]]c ∼ [[S]]m((τ, ξ)).
(c) tm is a sound approximation of tc: if f1 ∼ (τ1, ξ1) and f2 ∼ (τ2, ξ2), then
(f1 tc f2) ∼ ((τ1, ξ1) tm (τ2, ξ2)).
(d) if f1 ∼ (τ1, ξ1) and f2 ∼ (τ2, ξ2), then f2◦CallReturnS(f1) ∼ (τ1, ξ1)〈〈(τ2, ξ2)〉〉Sm.

Consider the abstract semantics equations given by equations (40-43). We
use these equations to compute an over-approximation of the least fixed point
of the concrete semantics equations 1-2 by computing the least fixed point of
the abstract semantics equations. In the following equations, ϑu denotes the
abstract value at the vertex (or program point) u of the control flow graph and
ϑu,v denotes the abstract value after the execution of the statement along the
edge u→ v in the control-flow graph.

ϑv = ID v is an entry vertex (40)

ϑv = tm{ϑu,v | u
S→ v} v is not an entry vertex (41)

ϑu,v = [[S]]m(ϑu) where u
S→ v,S is not a call-stmt (42)

ϑu,v = ϑexit(Q)〈〈ϑu〉〉Sm where u
S→ v,S is a call to Q (43)

As explained before, the collection of equations 40-43 can be viewed as a
single equation ϑ = F](ϑ), where F] is a function from VE 7→ Fm to itself.

The abstract analysis iteratively computes the sequence of values F]
i
(⊥) and

terminates when F]
i
(⊥) = F]

i+1
(⊥). The abstract summary of a procedure P

is defined to be the value of ϕexit(P) in the final solution.
The correctness of the analysis follows from Lemma 6 in the standard way.

The termination of the analysis follows from the following lemma which guar-
antees that every abstract transformer is monotonic w.r.t to the partial order
≤m.

Lemma 7. (a) For every primitive statement S (other than a procedure call),
[[S]]m is monotonic: if (τ, ξ) ≤m (τ ′, ξ′), then [[S]]m((τ, ξ))) ≤m [[S]]m((τ ′, ξ′)).
(b) if (τr, ξr) ≤m (τ ′r, ξ

′
r) and (τe, ξe) ≤m (τ ′e, ξ

′
e) then (τe, ξe)〈〈(τr, ξr)〉〉Sm ≤m

(τ ′e, ξ
′
e)〈〈(τ ′r, ξ′r)〉〉Sm.

Further Approximations In The Fixed Point Computation. As men-
tioned in the beginning of this section, our goal is to introduce a node merging
operation at selected program points in the control flow graph and still guarantee
correctness (of the computed summaries) and termination of the analysis. Node
merging can be formalized as introducing further approximations in the fixed
point computation. Assume that for every control-flow graph vertex v we have
an isotonic function NMv : Fm 7→ Fm. (A function NMv : Fm 7→ Fm is said to
be isotonic iff x ≤m NMv (x) for all x ∈ Fm.) In our usage, each NMv represents
a node merging operation, as we will formalize soon. Consider the following set
of abstract semantics equations.

ϑv = ID v is an entry vertex (44)

ϑv = NMv ((tm{ϑu,v | u
S→ v})) v is not an entry vertex (45)

ϑu,v = [[S]]m(ϑu) where u
S→ v,S is not a call-stmt (46)

ϑu,v = ϑexit(Q)〈〈ϑu〉〉Sm where u
S→ v,S is a call to Q (47)

The only difference between the above equations and the equations 40-43 is
that, in the above equations, at every program point v, we additionally perform
a node merging operation NMv on the abstract value that results after the join.
The above set of equations can be viewed as single equation ϑ = (F] ◦NM])(ϑ),
where F] is a function from VE 7→ Fm to itself defined by the equations 40-43;
NM] is a function from VE 7→ Fm to itself which applies the node merging
operation NMv on the abstract value resulting at the program point v after the
application of F]. (The abstract value that results at the edges of the control
flow graph after the application of F] would be left as such).

Lemma 8. lfpv
∗
c F \ ∼ lfp≤

∗
m (F] ◦NM])

Proof. By Lemma 6, lfpv
∗
c F \ ∼ lfp≤

∗
m F]. Lemma 10 implies that NMv is iso-

tonic w.r.t ≤m for all program point v. Hence, by the definition of NM], NM] is
isotonic w.r.t. ≤∗m. Therefore, lfp≤

∗
m F] ≤∗m lfp≤

∗
m (F] ◦NM]). Since γM is mono-

tonic w.r.t≤m (Lemma 5), lfpv
∗
c F \ ∼ lfp≤

∗
m F] implies that lfpv

∗
c F \ ∼ lfp≤

∗
m (F] ◦NM])

The correctness of the procedure summaries computed using the equations 44-
47 follows from Lemma 8. Since Fm has only finite length ≤m-chains, the ter-
mination of the fixed-point computation of the equations 44-47 follows from the
following lemma.

Lemma 9. Given a monotonic function F] on a poset (F∗m,≤∗m) with least el-
ement ⊥ and an isotonic function NM] on (F∗m,≤∗m),

{(F] ◦NM])
i
(⊥) | i ≥ 0} is an ascending chain in (F∗m ,≤∗m)

Node Merging. We now show how we define the node merging function
NMu . Consider a function NM : Fm 7→ Fm defined as follows:

NM ((τ, ξ)) =def

let ξ′ = ChooseNodesToMerge(τ)

let ξ′′ = ξ tp ξ′

(apply(ξ′′, τ), ξ′′)

The above function is parametrized by an function ChooseNodesToMerge that
is used to identify the set of nodes (all of which are either internal or external)
in τ to be merged. Specifically, ChooseNodesToMerge returns an element of P,
representing an equivalence relation that identifies nodes to be merged tgether.
The following results hold irrespective of how this function is defined.

Lemma 10. NM is isotonic w.r.t ≤m i.e, (τ, ξ) ≤m NM (τ, ξ).

The main advantage of the node merging optimization is that it reduces the
size of the transformer graph while every other transfer function increases the
size of the transformer graphs. However, when used injudiciously, node merging
can result in loss of precision. In our implementation we use a couple of heuristics
to identify the set of nodes to be merged.

Given τ ∈ Fa and v1, v2 ∈ V(τ), we merge v1, v2 iff one of the two conditions
hold (a) v1, v2 ∈ EV(τ) and ∃u ∈ V(τ) s.t. 〈u, f, v1〉 ∈ EE(τ) and 〈u, f, v2〉 ∈
EE(τ) for some field f or (b) v1, v2 ∈ IV(τ) and ∃u ∈ V(τ) s.t. 〈u, f, v1〉 ∈ IE(τ)
and 〈u, f, v2〉 ∈ IE(τ) for some field f .

In the WSR analysis, an external edge 〈u, f, v〉 on an escaping node u is
often used to identify objects that u.f may point-to in the state before the call
to the method (i.e, pre-state). However, having two external edges with the same
source and same field serves no additional purpose. Our first heuristic eliminates
such duplicate external edges, which may be produced, e.g., by multiple reads
“x.f”, where x is a formal parameter, of the same field of a pre-state object
inside a method or its transitive callees. Our second heuristic addresses a similar
problem that might arise due to multiple writes to the same field of an internal
object inside a method or its transitive callees. Although, theoretically, the above
two heuristics can result in loss of precision, it was not the case on most of the
programs on which we ran our analysis (see experimental results section). We

(a)Linked-List insert method (b)WSR Summary

1 insert(List l, Data y) {

2 x = l.head;

3 while(x.next != null)

4 x = x.next;

5 if(!y.lifetime.HasExpired) {

6 x.next = new ListNode();

7 x.next.data = y;

8 }

9 }

(c)After merging nodes n3, n4, n7 (d)After eliminating safe node n5

Fig. 4. Illustrative example for the optimizations

apply this node-merging optimization only at procedure exit (to the summary
graph produced for the procedure).

Figure 4 shows an illustration of this optimization. Figure 4(a) shows a sim-
ple procedure that appends an element to a linked list. Figure 4(b) shows the
WSR summary graph that would result by the straight forward application of
the transfer functions presented in the paper. Figure 4(c) shows the impact of
applying the node-merging optimization on the WSR summary shown in Fig-
ure 4(b). In the WSR summary, it can be seen that the external node n2 has
three outgoing external edges on the field next that end at nodes n3, n4 and n7.
This is due to the reads of the field next in the line numbers 3, 4 and 7. As
shown in Figure 4(b) the blow-up due to these redundant edges is substantial
(even in this small example). Figure 4(c) shows the transformer graph that re-
sults after merging the nodes n3, n4 and n7 that are identified as equivalent by
our heuristics. Let the transformer graphs shown in Figure 4(b) and Figure 4(c)
be τa and τb respectively. It can be verified that γ(τa) = γ(τb).

We present an empirical evaluation of the node-merging optimization in the
experimental evaluation section.

5 Other Optimizations

In this section we describe a couple of more optimizations (in addition to node
merging described before) for the WSR analysis that were motivated by our
implementation experience. We do not describe optimizations already discussed
by WSR in [19] and [17]. We present an empirical evaluation of the impact of

these optimizations on the scalability and the precision of the purity analysis in
the experimental evaluation section.

Optimization 1: Summary Merging. Though the analysis described ear-
lier does not consider virtual method calls, our implementation does handle them
(explained in A). Briefly, a virtual method call is modelled as a conditional call
to one of the various possible implementation methods. Let the transformer
graph before and after the virtual method call statement be τin and τout respec-
tively. Let the summaries of the possible targets of the call be τ1, τ2, . . . τn. In
the unoptimized approach, τout = τ1〈〈τin〉〉tco . . .tco τn〈〈τin〉〉. This optimization
constructs a single summary that over-approximates all the callee summaries,
as τmerge = τ1 tco . . . tco τn and computes τout as τmerge〈〈τin〉〉. Since each
τi � τmerge (in fact, τi vco τmerge), τmerge is a safe over-approximation of the
summaries of all callees. Once the graph τmerge is constructed it is cached and
reused when the virtual method call instruction is re-encountered during the
fix-point computation (provided the targets of the virtual method call do not
change across iterations and their summaries do not change). We further apply
node merging to τmerge to obtain τmo which is used instead of τmerge.

Optimization 2: Safe Node Elimination. This optimization identifies
certain external nodes that can be discarded from a method’s summary with-
out affecting correctness. As motivation, consider a method Set::Contains. This
method does not mutate the caller’s state, but its summary includes several ex-
ternal nodes that capture the “reads” of the method. These extraneous nodes
make subsequent operations more expensive. Let m be a method with a summary
τ . An external vertex ev is safe in τ iff it satisfies the following conditions for
every vertex v transitively reachable from ev: (a) v is not modified by the proce-
dure, and (b) No internal edge in τ ends at v and there exists no variable t such
that v ∈ σ(t). (We track modifications of nodes with an extra boolean attached
to nodes.) Let removeSafeNodes(τ) denote transformer obtained by deleting
all safe nodes in τ . We can show that γT (removeSafeNodes(τ)) = γT (τ). Like
node merging we perform this optimization only at method exits. Figure 4(d)
shows the transformer graph that would result after eliminating safe nodes from
the transformer graph shown in Figure 4(c).

6 Empirical Evaluation

We implemented the purity analysis along with the optimizations using Phoenix
analysis framework for .NET binaries [12]. In our implementation, summary
computation is performed using an intra-procedural flow-insensitive analysis
using the transfer functions described in Figure 3. We chose a flow-insensitive
analysis due to the prohibitively large memory requirements of a flow-sensitive
analysis when run on large libraries. We believe that the optimizations that we
propose will have a bigger impact on the scalability of a flow-sensitive analysis.

Fig. 5 shows the benchmarks used in our evaluation. All benchmarks (except
mscorlib.dll and System.dll) are open source C# libraries[4]. We carried out our

Benchmark LOC Description

DocX (dx) 10K library for manipulating Word 2007 files

Facebook APIs (fb) 21K library for integrating with Facebook.

Dynamic data display (ddd) 25K real-time data visualization tool

SharpMap (sm) 26K Geospatial application framework

Quickgraph (qg) 34K Graph Data structures and Algorithms

PDfsharp (pdf) 96K library for processing PDF documents

DotSpatial (ds) 220K libraries for manipulating Geospatial data

mscorlib (ms) Unknown Core C# library

System (sys) Unknown Core C# library

Fig. 5. benchmark programs

experiments on a 2.83 GHz, 4 core, 64 bit Intel Xeon CPU running Windows
Server 2008 with 16GB RAM.

We ran our implementation on all benchmarks in six different configurations
(except QuickGraph which was run on three configurations only) to evaluate our
optimizations: (a) base WSR analysis without any optimizations (base) (b) base
analysis with summary merging (base+sm) (c) base analysis with node merging
(base+nm) (d) base analysis with summary and node merging (base+nsm) (e)
base analysis with safe node elimination (base+sf) (f) base analysis with all
optimizations (base+all). We impose a time limit of 3 hours for the analysis of
each program (except QuickGraph where we used a time limit of 8 hours).

Fig. 6 shows the execution time and memory consumption of our implementa-
tion. Runs that exceed the time limit were terminated and their times are listed
as∞. The number of methods classified as pure were same for all configurations
(that terminated) for all benchmarks.

The results show that for several benchmarks, node merging drastically re-
duces analysis time. The other optimizations also reduce the analysis time,
though not as dramatically as node merging. Fig. 7 provides insights into the
reasons for this improvement by illustrating the correlation between analysis
time and number of duplicate edges in the summary. A point (x, y) in the graph
indicates that y percentage of analysis time was spent on procedures whose sum-
maries had, on average, at least x outgoing edges per vertex that are labelled by
the same field. The benchmarks that benefited from the node merging optimiza-
tion (viz. SharpMap, PDFSharp, Dynamic Data Display, DotSpatial) spend a
large fraction of the analysis time (approx. 90% of the time) on summaries that
have average number of duplicate edges per vertex above 4. The graph on the
right hand side plots the same metrics when node merging is enabled. It can
be seen that node merging is quite effective in reducing the duplicate edges and
hence also reduces analysis time.

Benchmarks dx fb ddd pdf sm ds ms sys qg

of methods 612 4112 2266 3883 1466 10810 2963 698 3380

Pure methods 340 1924 1370 1515 934 5699 1979 411 2152

time(s)

base 21 52 4696 5088 ∞ ∞ 108 17 ∞
base+sf 19 46 3972 2914 ∞ ∞ 56 16 −
base+sm 6 14 3244 4637 7009 ∞ 54 5 ∞
base+nm 20 46 58 125 615 963 21 16 −
base+nsm 5 9 26 79 181 251 13 4 −
base+all 5 8 23 76 179 232 12 4 21718

memory(MB)

base 313 478 1937 1502 ∞ ∞ 608 387 ∞
base+sf 313 460 1836 1136 ∞ ∞ 545 390 −
base+sm 313 478 1937 1508 369 ∞ 589 390 ∞
base+nm 296 460 427 535 356 568 515 387 −
base+nsm 296 461 411 569 369 568 514 390 −
base+all 296 446 410 550 356 568 497 390 703

Fig. 6. Results of analysing the benchmarks in six configurations

7 Related Work

Modular Pointer Analyses. The Whaley-Rinard analysis [19], which is the core of
Salcianu-Rinard’s purity analysis [17], is one of several modular pointer analyses
that have been proposed, such as [2] and [3]. Modular pointer analyses offer the
promise of scalability to large applications, but are quite complex to understand
and implement. We believe that an abstract interpretation formulation of such
modular analyses are valuable as they make them accessible to a larger audience
and simplify reasoning about variations and modifications of the algorithm. We
are not aware of any previous abstract interpretation formulation of a modular
pointer analysis. Our formulation also connects the WSR approach to Sharir-
Pnueli’s functional approach to interprocedural analysis [18].

Compositional Shape Analyses. Calcagno et al. [1] and Gulavani et al. [7]
present separation-logic based compositional approaches to shape analysis. They
perform more precise analysis but compute Hoare triples, which correspond to
conditional summaries: summaries which are valid only in states that satisfy the
precondition of the Hoare triple. These summaries typically incorporate signif-
icant “non-aliasing” conditions in the precondition. Modular pointer analyses
such as WSR have somewhat different goals. They are less precise, but more
scalable and produce summaries that can be used in any input state.

Parametric Shape Analyses. TVLA [15] is a parametric abstract interpreta-
tion that has been used to formalize a number of heap and shape analyses. The
WSR analysis and our formalization seem closely related to the relational ap-
proach to interprocedural shape analysis presented by Jeannet et al. [9]. The
Jeannet et al.approach shows how the abstract shape graphs of TVLA can
be used to represent abstract graph transformers (using a double vocabulary),

Base analysis Base analysis + node merging

Fig. 7. Number duplicate edges in the summary graph Vs percentage time taken to
compute the summary

which is used for modular interprocedural analysis. Rinetzky et al. [14] present a
tabulation-based approach to interprocedural heap analysis of cutpoint-free pro-
grams (which imposes certain restrictions on aliasing). (While the WSR analysis
computes a procedure summary that can be reused at any callsite, the tabulation
approach may analyze a procedure multiple times, but reuses analysis results at
different callsites if the “input heap” is the same.) However, there are interesting
similarities and connections between the WSR approach and the Rinetzky et al.
approach to merging “graphs” from the callee and the caller.

Modularity In Interprocedural Analysis. While the WSR analysis is modular
in the absence of recursion, recursive procedures must be analyzed together. Our
experience has shown that large strongly connected components of procedures
in the call-graph can be a bottleneck in analyzing large libraries. An interesting
direction for future work is to explore techniques that can be used to achieve
modularity even in the presence of recursion, e.g., see [6].

8 Proofs For The Basic Abstract Interpretation

In this section we discuss the proofs of the lemmas presented in the previous
sections. The proofs make use of several interesting results (stated and proved
in this section) that provides more insights into the WSR analysis.

8.1 Notations and Definitions.

Given a function h : S1 7→ P(S2), we define ĥ : P(S1) 7→ P(S2) as ĥ(X) =⋃
x∈X h(x). A function g : S1 7→ S2 can be naturally lifted to a function g′ :

S1 7→ P(S2), we use ĝ to denote ĝ′.

Definition 1. (Embedding) Let ζ ⊆ V ars. Let τ1 = (EV1,EE1, π1, IV1, IE1, σ1)
and τ2 = (EV2,EE2, π2, IV2, IE2, σ2), be two transformer graphs. We say that

τ1 �ζh τ2, h : (EV1 ∪ IV1) 7→ (EV2 ∪ IV2), iff

x ∈ IV1 ⇒ h(x) ∈ IV2 (48)

x ∈ EV1 ⇒ h(x) ∈ EV2 (49)

〈x, f, y〉 ∈ IE1 ⇒ 〈h(x), f, h(y)〉 ∈ IE2 (50)

〈x, f, y〉 ∈ EE1 ⇒ 〈h(x), f, h(y)〉 ∈ EE2 (51)

∀v ∈ Vars. ĥ(π1(v)) ⊆ π2(v) (52)

∀v ∈ Vars \ ζ. ĥ(σ1(v)) ⊆ σ2(v) (53)

Additionally, the function h is required to map null to null. The above definition
is straightforward, with one unusual aspect worth noting: ζ identifies a set of
variables whose final values need not be preserved by the embedding.

An abstract graph in Ga can be treated as a transformer graph in which all
vertices and edges are internal with π being λx.{}. Hence, the above notion of
embedding also applies to the abstract graphs in Ga.

In general, we omit the subscript h of � if the embedding function is not
relevant for the context and omit the superscript ζ if it is ∅. For all τ1, τ2, τ3 ∈ Fa
and for all ζ ⊆ V ars, we have the following properties of the embedding (�):

Property 1. τ1 �h τ2 =⇒ τ1 �ζh τ2

Property 2. τ1 vco τ2 iff τ1 �id τ2, where id is the identity function.

Property 3. (Transitivity) (τ1 �g τ2) ∧ (τ2 �h τ3) =⇒ (τ1 �g◦h τ3)

8.2 Monotonicity of γT (Lemma 1 and Lemma 3)

Lemma 11. ∀g1, g2 ∈ Ga. g1 � g2 ⇒ γG(g1) ⊆ γG(g2)

Proof. Directly follows from the definition of γG and �.

Let gc ∈ Gc be a concrete graph and τ ∈ Fa be an abstract transformer graph.
As described in Section 3, η[[τ, gc]] is the function that maps all the internal and
external vertices in a transformer graph τ to the concrete vertices in gc and
internal vertices in τ . As explained in Section 3, η is the least solution of the set
of (recursive) constraints 7-10 over the variable µ.

The least-solution can be computed iteratively as follows (Kleene’s iteration).
Say the value of µ computed at the end of iteration i, i ≥ 0 is µi. Initially,
∀x ∈ (IV∪EV), µ0(x) = ∅. At every iteration i, i ≥ 1, µi is computed by applying
the rules on the value of µ computed in the previous iteration i.e, µi−1. The least
solution for µ (which is η) is equal to µj where j is the smallest integer such
that µj−1 = µj .

We represent η[[τ, gc]] as η wherever τ and gc are clear from the context. Let
con(η(x)) denote the concrete vertices (runtime objects) in η(x) and int(η(x))
denote the internal vertices in η(x).

Lemma 12. If τ1 = (EV1,EE1, π1, IV1, IE1, σ1), τ2 = (EV2,EE2, π2, IV2, IE2, σ2) ∈
Fa and τ1 �ζh τ2 then for all gc ∈ Gc and for all x ∈ IV1 ∪ EV1, we have:

con(η[[τ1, gc]](x)) ⊆ con(η[[τ2, gc]](h(x))

ĥ(int(η[[τ1, gc]](x))) ⊆ int(η[[τ2, gc]](h(x))

Proof. We prove this by induction over the iterations in the computations of the
least solution of the rules (7-10).

Claim. Given a gc = (Vc,Ec, σc) ∈ Gc, ∀x ∈ V1.,

con(µi[[τ1, gc]](x)) ⊆ con(η[[τ2, gc]](h(x))

ĥ(int(µi[[τ1, gc]](x))) ⊆ int(η[[τ2, gc]](h(x))

Since η[[τ2, gc]] is the least solution for the set of constraints 7-10, it must
satisfy the constraints. Hence,

v ∈ IV2 ⇒ v ∈ η(v) (54)

v ∈ π2(X)⇒ σc(X) ∈ η(v) (55)

〈u, f, v〉 ∈ EE2, u
′ ∈ η(u), 〈u′, f, v′〉 ∈ Ec ⇒ v′ ∈ η(v) (56)

〈u, f, v〉 ∈ EE2, η(u) ∩ η(u′) 6= ∅, 〈u′, f, v′〉 ∈ IE2 ⇒ η(v′) ⊆ η(v) (57)

Base case (iteration 1). Say x ∈ (IV1 ∪ EV1) and y ∈ µ1(x). The external
edges rule and aliasing rule do not apply in this case as µ0 = ∅. Hence, y should
have been added to µ1(x) by the param nodes rule (8) or internal nodes rule (7).

a) Say y was added by the Param nodes rule (8). Hence the following must
hold,

∃V ∈ Vars s.t. x ∈ π1(V) ∧ y ∈ Vc ∧ y = σc(V)

Since τ1 �h τ2, x ∈ π1(V) implies that, h(x) ∈ π2(V)

From constraint 55, y = σc(V) and h(x) ∈ π2(V) implies that,

y ∈ η[[τ2, gc]](h(x)) (58)

b) Say y was added by the Internal nodes (Constraint 7). Hence the following
must hold,

x ∈ IV1 ∧ y = x (59)

Since τ1 �h τ2, x ∈ IV1 implies that, h(x) ∈ IV2 (60)

By constraint 54, h(x) ∈ η[[τ2, gc]](h(x)) (61)

Since y = x, h(y) ∈ η[[τ2, gc]](h(x)) (62)

Thus the claim holds in the base case.
Induction step. Now let us assume that the claim holds for all iterations from

1 to i−1. Now say y is added in iteration i by any of the four rules. If y is added
by the internal nodes or param nodes rule, by the proof shown for the base case,

the claim holds. In the rest of the proof we denote µ[[τ1, gc]] as µ and η[[τ2, gc]] as
η.

(a)Say y is added by the external edge rule (Constraint 9). In this case the
following must hold,

∃u, u′ s.t. 〈u, f, x〉 ∈ EE1 ∧ u′ ∈ µi−1(u) ∧ 〈u′, f, y〉 ∈ Ec (63)

In the above formulae, u′ is a concrete node as 〈u′, f, v′〉 ∈ Ec. By the induc-
tive hypothesis u′ ∈ µi−1(u) implies that,

u′ ∈ η(h(u)) (64)

Since τ1 �h τ2,

〈u, f, x〉 ∈ EE1 =⇒ 〈h(u), f, h(x)〉 ∈ EE2 (65)

Hence, from constraints 64 and 65,

〈h(u), f, h(x)〉 ∈ EE2 ∧ u′ ∈ η(h(u)) ∧ 〈u′, f, y〉 ∈ Ec (66)

From constraint 56, y ∈ η(h(x)) (67)

(b)Say y is added by the aliasing rule (Constraint 10). Hence the following
must hold,

∃u, u′, v′ s.t.

〈u, f, x〉 ∈ EE1 ∧ µi−1(u) ∩ µi−1(u′) 6= ∅ ∧ 〈u′, f, v′〉 ∈ IE1 ∧ y ∈ µi−1(v′) (68)

Since µi−1(u) ∩ µi−1(u′) 6= ∅, by the inductive hypothesis,

η(h(u)) ∩ η(h(u′)) 6= ∅ (69)

Since τ1 � τ2,

〈u, f, x〉 ∈ EE1 =⇒ 〈h(u), f, h(x)〉 ∈ EE2 (70)

〈u′, f, v′〉 ∈ IE1 =⇒ 〈h(u′), f, h(v′)〉 ∈ IE2 (71)

From (69), (70) and (71),

η(h(u)) ∩ η(h(u′)) 6= ∅ ∧ 〈h(u), f, h(x)〉 ∈ EE2 ∧ 〈h(u′), f, h(v′)〉 ∈ IE2 (72)

From Constraint 57, η(h(v′)) ⊆ η(h(x)) (73)

By the inductive hypothesis,

con(µi−1(v′)) ⊆ con(η(h(v′))) (74)

ĥ(int(µi−1(v′))) ⊆ int(η(h(v′))) (75)

Hence, from (73), (74) and (75),

con(µi−1(v′)) ⊆ con(η(h(x))) (76)

ĥ(int(µi−1(v′))) ⊆ int(η(h(x))) (77)

By (68), y ∈ µi−1(v′). Therefore by (76) and (77),

y ∈ con(µi−1(v′)) =⇒ y ∈ con(η(h(x))) (78)

y ∈ int(µi−1(v′)) =⇒ h(y) ∈ int(η(h(x))) (79)

Corollary 1. Let τ1 = (EV1,EE1, π1, IV1, IE1, σ1), τ2 = (EV2,EE2, π2, IV2, IE2, σ2).
If τ1 �h τ2 then for all gc ∈ Gc and for all x ∈ (EV1 ∪ IV1), we have:

con(η[[τ1, gc]](x)) ⊆ con(η[[τ2, gc]](h(x))

ĥ(int(η[[τ1, gc]](x))) ⊆ int(η[[τ2, gc]](h(x))

Lemma 13. ∀gc ∈ Gc. (τ1 �ζ τ2) =⇒ (τ1〈gc〉 �ζ τ2〈gc〉)

Proof. Let τ = (EV,EE, π, IV, IE, σ). As mentioned in the Section 3, τ〈gc〉 is
defined as follows: τ〈gc〉 = (Vτ〈gc〉,Eτ〈gc〉, στ〈gc〉) where,

Vτ〈gc〉 = Vc ∪ IV (80)

Eτ〈gc〉 = Ec ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE, v1 ∈ η(u), v2 ∈ η(v)} (81)

στ〈gc〉 = λx.
⋃

u∈σ(x)

η(u) (82)

To prove that τ1 〈gc〉 � τ2 〈gc〉 we need to construct a function (say h′ :
Vτ1〈gc〉 7→ Vτ2〈gc〉) that satisfies the embedding conditions given by Constraints (5).

Let h be any function that induces an embedding from τ1 and τ2. Define h′

using the function h as follows:

∀x ∈ Vτ1〈gc〉. h′(x) =

{
h(x), x ∈ IE1

x, otherwise (i.e, x ∈ Vc)

By the Lemma 12, if τ1 �ζh τ2 then

w ∈ η[[τ1, gc]](x), w ∈ IV1 =⇒ h(w) ∈ η[[τ2, gc]](h(x)) (83)

w ∈ η[[τ1, gc]](x), w ∈ Vc =⇒ w ∈ η[[τ2, gc]](h(x)) (84)

From the definition of h′,

w ∈ η[[τ1, gc]](x) =⇒ h′(w) ∈ η[[τ2, gc]](h(x)) (85)

(a) Say 〈v1, f, v2〉 ∈ Eτ1〈gc〉.

By (81), 〈v1, f, v2〉 ∈ Eτ1〈gc〉 =⇒
∃u, v s.t. 〈u, f, v〉 ∈ IE1, v1 ∈ η[[τ1, gc]](u), v2 ∈ η[[τ1, gc]](v) (86)

Since τ1 �ζh τ2, 〈u, f, v〉 ∈ IE1 =⇒ 〈h(u), f, h(v)〉 ∈ IE2 (87)

By (85), v1 ∈ η[[τ1, gc]](u) =⇒ h′(v1) ∈ η[[τ2, gc]](h(u)) (88)

and, v2 ∈ η[[τ1, gc]](v) =⇒ h′(v2) ∈ η[[τ2, gc]](h(v)) (89)

By (81), 〈h′(v1), f, h′(v2)〉 ∈ Eτ2〈gc〉 (90)

(b) Say v ∈ στ1〈gc〉(V).

By (82), v ∈ στ1〈gc〉(V) =⇒ ∃u ∈ σ1(V) s.t. v ∈ η[[τ1, gc]](u)

Since τ1 �ζh τ2, h(u) ∈ σ2(V) (91)

By (85), v ∈ η[[τ1, gc]](u) =⇒ h′(v) ∈ η[[τ2, gc]](h(u)) (92)

By (82), h′(v) ∈ στ2〈gc〉(V) (93)

Corollary 2. If τ1 �ζid τ2 then τ1〈gc〉 �ζid τ2〈gc〉 for all gc ∈ Gc.

Proof. By the above proof, if τ1 �ζh τ2 then τ1〈gc〉 �ζh′ τ2〈gc〉. By the definition
of h′, when h = id, h′ = id.

Lemma 14. τ1 � τ2 =⇒ γT (τ1) vc γT (τ2)

Proof. Directly follows from the definition of γT , Lemma 11 and Lemma 13.

Corollary 3. τ1 � τ2 and τ2 � τ1 implies that γ(τ1) = γ(τ2). The concrete
images of τ1 and τ2 are equal if they belong to the same equivalence class in Fa
wrt �.

8.3 Abstract Semantics Of Primitive Statements (Lemma 2)

We now show that, for any statement S that is not a procedure call statement,
if f is correctly abstracted by τ then f ◦ [[S]]c is correctly abstracted by [[S]]a(τ)
i.e,

f ∼ τ =⇒ f ◦ [[S]]c ∼ [[S]]a(τ) (94)

where, f ∼ τ ⇐⇒ f vc γT (τ). It is easy to see that if f1 vc f2 then
f1 ◦ [[S]]c vc f2 ◦ [[S]]c. Hence, it suffices to prove that

γT (τ) ◦ [[S]]c vc γT ([[S]]a(τ)) (95)

≡ ∀gc ∈ Gc, (γT (τ) ◦ [[S]]c)(gc) ⊆ γT ([[S]]a(τ))(gc) (96)

≡ ∀gc ∈ Gc, {[[S]]c(ptg1) | ptg1 ∈ γT (τ)(gc)} ⊆ γT ([[S]]a(τ))(gc) (97)

Using the definition of γT the above can be reduced to

∀gc ∈ Gc, {[[S]]c(ptg1) | ptg1 ∈ γG(τ〈gc〉)} ⊆ γG([[S]]a(τ)〈gc〉) (98)

By the definition of γG,

∀gc ∈ Gc, ∀ptg1 ∈ Gc, ptg1 � τ〈gc〉 =⇒ [[S]]c(ptg1) � [[S]]a(τ)〈gc〉 (99)

Hence it suffices to show that for each of the transfer functions shown in Figure 3,
(99) holds.

We now prove a lemma that applies to all the transfer functions shown in
Figure 3.

Lemma 15. Let S be a statement, τa = (EVa,EEa, πa, IVa, IEa, σa) be a trans-
former graph and ptg = (Vptg,Eptg, σptg) be a concrete graph. Let τ ′a = [[S]]a(τa).
If [[S]]a(τa) is of the form

(EVa ∪ EVnew,EEa ∪ EEnew, πa, IVa ∪ IVnew, IEa ∪ IEnew, σa[v1 7→ χ])

where χ ⊆ (EVa ∪ EVnew ∪ IVa ∪ IVnew) then ptg �h τa〈gc〉 implies that

〈x, f, y〉 ∈ Eptg =⇒ 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉

∀v ∈ Vars \ {v1}. h(σptg(v)) ⊆ στ ′a〈gc〉(v)

Proof. Say 〈x, f, y〉 ∈ Ec,

Since ptg �h τa〈gc〉, 〈h(x), f, h(y)〉 ∈ Eτa〈gc〉 (100)

By our assumption about [[S]]a(τa), τa �{v1}id τ ′a (101)

By Corollary 2, τa〈gc〉 �{v1}id τ ′a〈gc〉 (102)

From (100) and (102), 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉 (103)

Say x = σc(var) ∧ var 6= v1,

Since ptg �h τa〈gc〉, h(x) ∈ στa〈gc〉(var) (104)

From (102) τa〈gc〉 �{v1}id τ ′a〈gc〉 (105)

Since var 6= v1, h(x) ∈ στ ′a〈gc〉(var) (106)

Without loss of generality assume that in all the statements in Figure 3,
v1 6= v2.

Lemma 16. For the statement S : v1 = v2, the abstract semantics of S correctly
approximates the concrete semantics of S.

Proof. Let τa = (EVa,EEa, πa, IVa, IEa, σa) and ptg1 = (Vc,Ec, σc). [[S]]c(ptg1)
and [[S]]a(τa) are defined as follows:

[[S]]c(Vc,Ec, σc) = {(Vc,Ec, σc[v1 7→ σc(v2)])}
[[S]]a(EVa,EEa, πa, IVa, IEa, σa) = (EVa,EEa, πa, IVa, IEa, σa[v1 7→ σa(v2)])

Let,

ptg′1 = [[S]]c(ptg1) = (V′c,E
′
c, σ
′
c)

τ ′a = [[S]]a(τa) = (EV′a,EE
′
a, π
′
a, IV

′
a, IE

′
a, σ
′
a)

τa〈gc〉 = (Vτa〈gc〉,Eτa〈gc〉, στa〈gc〉)

τ ′a〈gc〉 = (Vτ ′a〈gc〉,Eτ ′a〈gc〉, στ ′a〈gc〉)

From (99), we need to prove that,

∀gc ∈ Gc, ∀ptg1 ∈ Gc, ptg1 � τa〈gc〉 =⇒ ptg′1 � τ ′a〈gc〉

Since, ptg1 � τa〈gc〉, there exists a function h s.t., ptg1 �h τa〈gc〉. We prove
that h induces an embedding from ptg′1 to τa〈gc〉 by proving the following two
conditions (see Conditions 5):

〈x, f, y〉 ∈ E′c ⇒ 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉 (107)

∀v ∈ Vars. στ ′a〈gc〉(v) ⊇ {h(σ′c(v))} (108)

(Proof of 107). Say 〈x, f, y〉 ∈ E′c,

From the concrete semantics, 〈x, f, y〉 ∈ Ec (109)

By Lemma 15, 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉 (110)

(Proof of 108). Say x = σ′c(var),

1. Case (a), var 6= v1

From the concrete semantics, x = σc(var) (111)

By Lemma 15, h(x) ∈ στ ′a〈gc〉(var) (112)

2. Case (b), var = v1

From concrete semantics, x ∈ σ′c(v1) =⇒ x ∈ σ′c(v2) (113)

Since v2 6= v1, by case(a), x ∈ σ′c(v2) =⇒ h(x) ∈ στ ′a〈gc〉(v2) (114)

From abstract semantics, σ′a(v2) = σ′a(v1) (115)

By the definition of 〈〉, στ ′a〈gc〉(v2) = στ ′a〈gc〉(v1) (116)

By (114) and (116), h(x) ∈ στ ′a〈gc〉(v1) (117)

Lemma 17. For the statement S : ` : v = new C, the abstract semantics of S
correctly approximates the concrete semantics of S.

Proof. Let τa = (EVa,EEa, πa, IVa, IEa, σa) and ptg1 = (Vc,Ec, σc). [[S]]c(ptg1)
and [[S]]a(τa) are defined as follows:

[[S]]c(Vc,Ec, σc) = {(Vc ∪ {n},Ec ∪ {n} × Fields × {null}, σc[v 7→ n]) | n ∈ Nc \ V}
[[S]]a(EVa,EEa, πa, IVa, IEa, σa) =

(EVa,EEa, πa, IVa ∪ {n`}, IEa ∪ {n`} × Fields × {null}, σa[v 7→ {n`}])

Let,

ptg′1 = [[S]]c(ptg1) = (V′c,E
′
c, σ
′
c)

τ ′a = [[S]]a(τa) = (EV′a,EE
′
a, π
′
a, IV

′
a, IE

′
a, σ
′
a)

τa〈gc〉 = 〈Vτa〈gc〉,Eτa〈gc〉, στa〈gc〉〉
τ ′a〈gc〉 = 〈Vτ ′a〈gc〉,Eτ ′a〈gc〉, στ ′a〈gc〉〉

From (99), we need to prove that,

∀gc ∈ Gc, ∀ptg1 ∈ Gc, ptg1 � τa〈gc〉 =⇒ ptg′1 � τ ′a〈gc〉

Since, ptg1 � τa〈gc〉, there exists a function h s.t., ptg1 �h τa〈gc〉. Define a
function h′ : V′c 7→ Vτa〈gc〉 as follows:

∀x ∈ V′c. h′(x) =

{
h(x), x 6= n
n`, x = n

To prove that h′ induces an embedding from ptg′1 to τa〈gc〉, we need to prove
the following two conditions (see (5)):

〈x, f, y〉 ∈ E′c ⇒ 〈h′(x), f, h′(y)〉 ∈ Eτ ′a〈gc〉 (118)

∀v ∈ Vars. στ ′a〈gc〉(v) ⊇ {h′(σ′c(v))} (119)

(Proof of 118). Say 〈x, f, y〉 ∈ E′c,

1. Case(a) 〈x, f, y〉 ∈ Ec

By Lemma 15, 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉 (120)

Since 〈x, f, y〉 ∈ Ec, x 6= n ∧ y 6= n (121)

By the def. of h′ h′(x) = h(x) ∧ h′(y) = h(y) (122)

Sub in (120), 〈h′(x), f, h′(y)〉 ∈ Eτ ′a〈gc〉 (123)

2. Case(b) 〈x, f, y〉 ∈ {n} × Fields × {null}

In this case, x = n ∧ y = null (124)

By the def. of h′, h′(x) = n` ∧ h′(y) = null (125)

From the abstract semantics, 〈n`, f,null〉 ∈ Eτ ′a〈gc〉 (126)

By (125), 〈h′(x), f, h′(y)〉 ∈ Eτ ′a〈gc〉 (127)

(Proof of 119). Say x = σ′c(var),

1. Case (a), var 6= v

From the concrete semantics, x = σc(var) ∧ x 6= n (128)

By Lemma 15, h(x) ∈ στ ′a〈gc〉(var) (129)

Since x 6= n, h(x) = h′(x) ∈ στ ′a〈gc〉(var) (130)

2. Case (b), var = v

From concrete semantics, x = n = σ′c(v) (131)

From abstract semantics, n` = σ′a(v) (132)

Since n` is an internal node, η[[τ ′a, gc]](n`) = {n`} (see internal nodes rule,
Constraint 7). Hence,

By the def. of 〈〉, στ ′a〈gc〉(v) = η(n`) = n` (133)

By the definition of h′, h′(n) = n` (134)

Sub. in (133), h′(n) = στ ′a〈gc〉(v) (135)

Since v = var and n = x, h′(x) ∈ στ ′a〈gc〉(var) (136)

Lemma 18. For the statement S : v1.f = v2 the abstract semantics of S is a
correct approximation of the concrete semantics of S.

Proof. Let τa = (EVa,EEa, πa, IVa, IEa, σa) and ptg1 = (Vc,Ec, σc). [[S]]c(ptg1)
and [[S]]a(τa) are defined as follows:

[[S]]c(Vc,Ec, σc) =

{(Vc, {〈u, l, v〉 ∈ Ec | u 6= σc(v1) ∨ l 6= f} ∪ {〈σc(v1), f, σc(v2)〉}, σc)}
[[S]]a(EVa,EEa, πa, IVa, IEa, σa) = (EVa,EEa, πa, IVa, IEa ∪ σa(v1)× {f} × σa(v2), σa)

Let,

ptg′1 = [[S]]c(ptg1) = (V′c,E
′
c, σ
′
c)

τ ′a = [[S]]a(τa) = (EV′a,EE
′
a, π
′
a, IV

′
a, IE

′
a, σ
′
a)

τa〈gc〉 = 〈Vτa〈gc〉,Eτa〈gc〉, στa〈gc〉〉
τ ′a〈gc〉 = 〈Vτ ′a〈gc〉,Eτ ′a〈gc〉, στ ′a〈gc〉〉

From condition 99, we need to prove that,

∀gc ∈ Gc, ∀ptg1 ∈ Gc, ptg1 � τa〈gc〉 =⇒ ptg′1 � τ ′a〈gc〉

Since, ptg1 � τa〈gc〉, there exists a function h s.t., ptg1 �h τa〈gc〉. We prove that
h induces an embedding from ptg′1 to τa〈gc〉 by proving that the following holds:

〈x, f, y〉 ∈ E′c =⇒ 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉 (137)

∀v ∈ Vars. στ ′a〈gc〉(v) ⊇ {h(σ′c(v))} (138)

(Proof of 137). Say 〈x, f, y〉 ∈ E′c,

1. Case(a) 〈x, f, y〉 ∈ Ec.
By Lemma 15, since ptg1 �h τa〈gc〉, 〈h(x), f, h(y)〉 ∈ τ ′a〈gc〉.

2. Case(b) 〈x, f, y〉 ∈ 〈σc(v1), f, σc(v2)〉. In this case x = σc(v1) and y = σc(v2).

Since ptg1 �h τa〈gc〉, h(σc(v1)) ∈ στa〈gc〉(v1) (139)

From the abs. semantics, τa �id τ ′a (140)

By Corollary 2, τa〈gc〉 �id τ ′a〈gc〉 (141)

By the def. of �, ∀v ∈ V ars. στa〈gc〉(var) ⊆ στ ′a〈gc〉(var) (142)

The above implies that, στa〈gc〉(v1) ⊆ στ ′a〈gc〉(v1) (143)

By (139), h(σc(v1)) ∈ στ ′a〈gc〉(v1) (144)

From the def. of 〈〉 h(σc(v1)) ∈ στ ′a〈gc〉(v1) =⇒
∃w s.t. h(σc(v1)) ∈ η[[τ ′a, gc]](w) ∧ w ∈ στ ′a(v1)

(145)

Since στ ′a(v1) = στa(v1), ∃w s.t. h(σc(v1)) ∈ η[[τ ′a, gc]](w)

∧ w ∈ στa(v1) (146)

Similarly, ∃w, s.t. , h(σc(v2)) ∈ η[[τ ′a, gc]](w)

∧ w ∈ στa(v2) (147)

From the abstract semantics, σa(v1)× {f} × σa(v2) ∈ IE′a. By the def. of 〈〉,

∀w1 ∈ στa(v1),∀w2 ∈ στa(v2),

η[[τ ′a, gc]](w1)× {f} × η[[τ ′a, gc]](w2) ∈ Eτ ′a〈gc〉 (148)

From (146), (147) and (148)

〈h(σc(v1)), f, h(σc(v2))〉 ∈ Eτ ′a〈gc〉

≡ 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉

(Proof of 138). Say x = σ′c(var).

Form the concrete semantics, x = σc(var) (149)

Given, ptg1 �h τa〈gc〉 (150)

Hence, by Lemma 15, h(x) ∈ στ ′a〈gc〉(var) (151)

To prove the remaining transfer functions correct we make use of the following
lemmas.

Lemma 19. Let τ = (EV,EE, π, IV, IE, σ) be a transformer graph, y ∈ EV =⇒
y ∈ Escaping(τ)

Proof. Say y ∈ EV.
Case(a), y ∈ range(π). By the def. of Escaping(τ), y ∈ Escaping(τ)
Case(b), y /∈ range(π). By the definition of the transformer graph,

y ∈ EV ∧ y /∈ range(π) ⇐⇒ ∃〈x, f, y〉 ∈ EE (152)

〈x, f, y〉 ∈ EE =⇒ x ∈ Escaping(τ) (153)

By the definition of Escaping(τ), x ∈ Escaping(τ) and 〈x, f, y〉 ∈ EE imply that
y ∈ Escaping(τ).

Lemma 20. Let τ = (EV,EE, π, IV, IE, σ) be a transformer graph. Let gc ∈ Gc
be a concrete graph.

x ∈ EV ∧ y ∈ IV ∧ y ∈ η[[τ, gc]](x) =⇒ y ∈ Escaping(τ)

Proof. We denote η[[τ, gc]] as η. As explained earlier, η is the least solution of the
set of constraints (7)-(10) over variable µ. We assume that the least-solution is
computed iteratively, starting from µ = ∅. We denote the value of µ computed
at the end of iteration i, i ≥ 0 using µi (µ0 = ∅).

Claim. Given a gc = (Vc,Ec, σc) ∈ Gc, ∀x ∈ V1.,

x ∈ EV ∧ y ∈ IV ∧ y ∈ µi(x) =⇒ y ∈ Escaping(τ) (154)

Base case, iteration 1. ∃x ∈ EV, y ∈ IV s.t. y ∈ µ1(x) is not possible. From
constraints (7)-(10), the only rule that maps an external node to an internal

node is the alias rule (10). But since µ0 = ∅, it does not apply in the base case.
Hence, The claim holds trivially.

Assume that the claim holds for all iterations form 0 to i− 1.
Iteration i. Say ∃x ∈ EV, y ∈ IV s.t. y ∈ µi(x). If y ∈ µi−1(x) the claim holds

by the inductive hypothesis. Say y was added by the alias rule in iteration i (y
could not have been added by any other rule). In this case the following must
hold.

〈u, f, x〉 ∈ EE ∧ 〈r, f, s〉 ∈ IE∧
µi−1(u) ∩ µi−1(r) 6= ∅ ∧ y ∈ µi−1(s) (155)

Now consider the following two cases:
Case (a) s ∈ EV. By the inductive hypothesis y ∈ Escaping(τ).
Case (b) s ∈ IV.

s ∈ IV implies that, µi−1(s) = {s} (156)

Since, y ∈ µi−1(s) y = s (157)

From (155), 〈r, f, y〉 ∈ IE (158)

Case (b.1) r ∈ Escaping(τ). By the def. of Escaping(τ), (158) implies that
y ∈ Escaping(τ).
Case (b.2) r /∈ Escaping(τ).

By Lemma 19, r ∈ IV (159)

By rule (7), µi−1(r) = {r} (160)

By (155), µi−1(u) ∩ µi−1(r) 6= ∅ (161)

From (160) and (161), r ∈ µi−1(u) (162)

If say u ∈ EV then, by the inductive hypothesis, r ∈ Escaping(τ) which is a
contradiction to the assumption that r /∈ Escaping(τ). Say, u ∈ IV.

Since, u ∈ IV, µi−1(u) = {u} (163)

From (162), r = u (164)

From (155), 〈u, f, x〉 ∈ EE (165)

Hence, from (164), 〈r, f, x〉 ∈ EE (166)

By the def. of transformer graphs, 〈r, f, x〉 ∈ EE =⇒ r ∈ Escaping(τ) (167)

(167) is again a contradiction to the assumption that r /∈ Escaping(τ). Hence
Case(b.2) is not possible.

Lemma 21. Let τ = (EV,EE, π, IV, IE, σ) be a transformer graph. Let gc ∈ Gc
be a concrete graph.

∃x, y ∈ (EV ∪ IV) s.t.

η[[τ, gc]](x) ∩ η[[τ, gc]](y) 6= ∅ ∧ x 6= y =⇒ x, y ∈ Escaping(τ)

Proof. Case(a) Say both x and y are internal nodes.
By the def. of η (rule internal nodes),

η[[τ, gc]](x) = {x}
η[[τ, gc]](y) = {y} (168)

Since, x 6= y, η[[τ, gc]](x) ∩ η[[τ, gc]](y) = ∅ (169)

Since it is given that η[[τ, gc]](x)∩η[[τ, gc]](y) 6= ∅, (169) is a contradiction. Hence,
this case is not possible. At least one of x or y should be an external node.

Case(b) Say x ∈ EV and y ∈ IV.

By lemma 19, x ∈ Escaping(τ) (170)

Since y ∈ IV, η[[τ, gc]](y) = {y} (171)

Given, η[[τ, gc]](x) ∩ η[[τ, gc]](y) 6= ∅ (172)

By (171) and (172), y ∈ η[[τ, gc]](x) (173)

By Lemma 20, x ∈ EV ∧ y ∈ IV ∧ y ∈ η[[τ, gc]](x)

=⇒ y ∈ Escaping(τ) (174)

Case(c) Say x ∈ EV and y ∈ EV. By Lemma 19, x, y ∈ EV =⇒ x, y ∈
Escaping(τ).

Lemma 22. For the statement S : ` : v1 = v2.f , the abstract semantics of S is
a correct approximation of the concrete semantics of S.

Proof. Let τa = (EVa,EEa, πa, IVa, IEa, σa) and ptg1 = (Vc,Ec, σc). [[S]]c(ptg1)
and [[S]]a(τa) are defined as follows:

[[S]]c(Vc,Ec, σc) = {(Vc,Ec, σ[v1 7→ n]) | 〈σc(v2), f, n〉 ∈ Ec}
[[S]]a(EVa,EEa, πa, IVa, IEa, σa) =

let A = {n | ∃n1 ∈ σa(v2), 〈n1 , f ,n〉 ∈ IEa} in

let B = σa(v2) ∩ Escaping(τ) in

if (B = φ)

then (EVa,EEa, πa, IVa, IEa, σa[v1 7→ A])

else (EVa ∪ {n`},EEa ∪B × {f} × {n`}, πa, IVa, IEa, σa[v 7→ A ∪ {n`}])

Let,

ptg′1 = [[S]]c(ptg1) = (V′c,E
′
c, σ
′
c)

τ ′a = [[S]]a(τa) = (EV′a,EE
′
a, π
′
a, IV

′
a, IE

′
a, σ
′
a)

τa〈gc〉 = 〈Vτa〈gc〉,Eτa〈gc〉, στa〈gc〉〉
τ ′a〈gc〉 = 〈Vτ ′a〈gc〉,Eτ ′a〈gc〉, στ ′a〈gc〉〉

From (99), we need to prove that,

∀gc ∈ Gc, ∀ptg1 ∈ Gc, ptg1 � τa〈gc〉 =⇒ ptg′1 � τ ′a〈gc〉

Since, ptg1 � τa〈gc〉, there exists a function h s.t., ptg1 �h τa〈gc〉. We now prove
that h induces an embedding from ptg′1 to τa〈gc〉 by proving that the following
two conditions hold:

〈x, f, y〉 ∈ E′c =⇒ 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉 (175)

∀v ∈ Vars. στ ′a〈gc〉(v) ⊇ {h(σ′c(v))} (176)

Say 〈x, f, y〉 ∈ E′c. From the concrete semantics, 〈x, f, y〉 ∈ Ec. By Lemma 15,
ptg1 �h τa〈gc〉 implies that 〈h(x), f, h(y)〉 ∈ Eτ ′a〈gc〉.

Say x = σ′c(var) ∧ var 6= v1. From the concrete semantics, x = σc(var). By
Lemma 15, ptg1 �h τa〈gc〉 implies that h(x) ∈ στ ′a〈gc〉.

Say x = σ′c(v1).

Form the concrete semantics, σ′c(v1) = n where 〈σc(v2), f, n〉 ∈ Ec (177)

Since ptg1 �h τa〈gc〉, 〈h(σc(v2)), f, h(n)〉 ∈ Eτa〈gc〉 (178)

By the definition of 〈〉, an edge 〈h(σc(v2)), f, h(n)〉 belongs to Eτa〈gc〉 only if
at least one of the following two conditions holds.

〈h(σc(v2)), f, h(n)〉 ∈ Ec (179)

∃x, y ∈ (EVa ∪ IVa), s.t.

h(σc(v2)) ∈ η[[τa, gc]](x) ∧ h(n) ∈ η[[τa, gc]](y) ∧ 〈x, f, y〉 ∈ IEa (180)

Say Condition 179 holds i.e, 〈h(σc(v2)), f, h(n)〉 ∈ Ec.

Since ptg1 �h τa〈gc〉, h(σc(v2)) ∈ στa〈gc〉(v2) (181)

By the definition of 〈〉, ∃w ∈ σa(v2) s.t.

h(σc(v2)) ∈ η[[τa, gc]](w) (182)

Since 〈h(σc(v2)), f, h(n)〉 ∈ Ec, h(σc(v2)) ∈ Vc.

By the definition of η, ∃t ∈ Vc, t ∈ η[[τa, gc]](x) =⇒ x ∈ EVa (183)

From (182) and (183), w ∈ EVa (184)

By lemma 19, w ∈ EVa =⇒ w ∈ Escaping(τ) (185)

Hence, by the abs. semantics, 〈w, f, n`〉 ∈ EE(τ ′a) (186)

Since τa �{v1}id τ ′a, by Lemma 12, h(σc(v2)) ∈ η[[τa, gc]](w) implies that,

h(σc(v2)) ∈ η[[τ ′a, gc]](w) (187)

We have assumed that 〈h(σc(v2)), f, h(n)〉 ∈ Ec. This together with (186)
and (187) imply that the external edge rule of η computation applies (see (9)).

Therefore,

h(n) ∈ η[[τ ′a, gc]](n`) (188)

By the abstract semantics, n` ∈ σ′a(v1) (189)

By the def. of 〈〉, h(n) ∈ στ ′a〈gc〉(v1) (190)

which is same as, h(σ′c(v1)) ∈ στ ′a〈gc〉(v1) (191)

Say Condition 180 holds i.e,

∃x, y ∈ (EVa ∪ IVa), s.t. h(σc(v2)) ∈ η[[τa, gc]](x)

∧h(n) ∈ η[[τa, gc]](y) ∧ 〈x, f, y〉 ∈ IEa (192)

Since ptg1 �h τa〈gc〉, h(σc(v2)) ∈ στa〈gc〉(v2) (193)

By the definition of 〈〉, ∃w ∈ σa(v2) s.t.

h(σc(v2)) ∈ η[[τa, gc]](w) (194)

It is assumed that, ∃x, h(σc(v2)) ∈ η[[τa, gc]](x) (195)

Hence, η[[τa, gc]](w) ∩ η[[τa, gc]](x) 6= ∅ (196)

Now there are two cases to consider w 6= x and w = x.

Consider the case where w = x.

By assumption, 〈x, f, y〉 ∈ IEa (197)

By (194), w = x ∈ σa(v2) (198)

Hence, from abstract semantics, y ∈ σ′a(v1) (199)

We have assumed that, h(n) ∈ η[[τa, gc]](y) (200)

Since τa �{v1}id τ ′a, h(n) ∈ η[[τ ′a, gc]](y) (201)

By the definition of 〈〉, y ∈ σ′a(v1) (199) and h(n) ∈ η[[τ ′a, gc]](y) (201) imply that
h(n) ∈ στa〈gc〉(v1) as required.

Consider the case where w 6= x.

By Lemma 21, (196) implies that w, x ∈ Escaping(τ) (202)

By the abs. semantics, 〈w, f, n`〉 ∈ EE′a (203)

By assumption, 〈x, f, y〉 ∈ IEa (204)

Hence, From the abs. semantics, 〈x, f, y〉 ∈ IE′a (205)

Since, τa �{v1}id τ ′a, η[[τa, gc]](w) ∩ η[[τa, gc]](x) 6= ∅ implies that

η[[τ ′a, gc]](w) ∩ η[[τ ′a, gc]](x) 6= ∅ (206)

(203),(205) and (206) imply that the alias rule of η computation applies (see
10). Hence,

η[[τ ′a, gc]](y) ⊆ η[[τ ′a, gc]](n`) (207)

Since h(n) ∈ η[[τ ′a, gc]](y) h(n) ∈ η[[τ ′a, gc]](n`) (208)

By the abstract semantics, n` ∈ σ′a(v1) (209)

By the def. of 〈〉, h(n) ∈ στa〈gc〉(v1) (210)

which is same as, h(σ′c(v1)) ∈ στ ′a〈gc〉(v1) (211)

8.4 Abstract Semantics Of Procedure Call (Lemma 2)

In this section we prove the correctness of the procedure call transfer function
(i.e, summary application). Let S be a procedure call Call P (v1, · · · , vk). Let
τr = (EVr,EEr, πr, IVr, IEr, σr) be the transformer graph at a program point
before the call and let τe = (EVe,EEe, πe, IVe, IEe, σe) be the summary of P .

Let τe〈〈τr, ν〉〉 = (EV′,EE′, π′, IV′, IE′, σ′), where ν : (IVe∪ IEe) 7→ (IVr∪EVr∪
IVe ∪ EVe)),

V′ = (IVr ∪ EVr) ∪ ν̂(IVe ∪ EVe)

IV′ = V′ ∩ (IVr ∪ IVe)

EV′ = V′ ∩ (EVr ∪ EVe)

IE′ = IEr ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IEe, v1 ∈ ν(u), v2 ∈ ν(v)}
EE′ = EEr ∪ {〈u′, f, v〉 | 〈u, f, v〉 ∈ EEe, u

′ ∈ ν(u), escapes(u′)}
π′ = πr

σ′ = λx. ν̂(σe(x))

escapes(v) ≡ ∃u ∈ range(π′).v is reachable from u via IE′ ∪ EE′ edges

Let ηa be the least solution of the set of following constraints over the variable
µa.

x ∈ IVe ⇒ x ∈ µa(x) (212)

x ∈ π(var)⇒ σr(var) ⊆ µa(x) (213)

〈u, f, v〉 ∈ EEe, u
′ ∈ µa(u), 〈u′, f, v′〉 ∈ IEr ⇒ v′ ∈ µa(v) (214)

〈u, f, v〉 ∈ EEe, µa(u) ∩ µa(u′) 6= {}, 〈u′, f, v′〉 ∈ IEe ⇒ µa(v′) ⊆ µa(v) (215)

〈u, f, v〉 ∈ EEe, µa(u) ∩ Escaping(τe〈〈τr, µa〉〉) 6= {} ⇒ v ∈ µa(v) (216)

We now define pushS , popS operations for the transformer graphs as follows:

pushS(σ) = λv. v ∈ Globals → σ(v) | v ∈ Locals → null | v = Param(i)→ σ(ai)

popS(σ, σ′) = λv. v ∈ Globals → σ′(v) | v ∈ Locals ∪ Params → σ(v)

pushS((EV1,EE1, π1, IV1, IE1, σ1)) = (EV1, IV1,EE1, IE1, pushS(σ1))

popS((EV1,EE1, π1, IV1, IE1, σ1), (EV2,EE2, π2, IV2, IE2, σ2)) = (EV2, IV2,EE2, IE2, popS(σ1, σ2))

The transformer graph after the procedure call statement S is given by

popS(τr, τe〈〈pushS(τr)〉〉) (217)

where, τe〈〈τr〉〉 = τe〈〈τr, ηa〉〉 (218)

Note that the above definition of abstract semantics of a call statement
is semantically equivalent to the definition presented earlier in Section 3 (i.e,
τe〈〈τr〉〉Sa) but unlike τe〈〈τr〉〉Sa which incorporated the push and pop operations
into the operator 〈〈〉〉 this definition makes them explicit similar to the concrete
semantics.

As mentioned in the Section 3, Globals denote the set of global variables in
the program, Params denote the set of parameter variables and Locals denote
the set of local variables. We assume that all the procedures use the same set of
parameters and local variables.

In the rest of the proof we use the following naming convention.

τe〈〈τr〉〉 = (EVabsx,EEabsx, πabsx, IVabsx, IEabsx, σabsx)

gc = (Vc,Ec, σc)

ptg1 = (Vc1 ,Ec1 , σc1)

τr〈gc〉 = (Vcr,E
c
r, σ

c
r)

τe〈ptg1〉 = (V1
e,E

1
e, σ

1
e)

(τe〈〈τr〉〉)〈gc〉 = (Vabsx
c,Eabsx

c, σcabsx)

To prove that the summary application is correct we need to show that,

fr ∼ τr ∧ fe ∼ τe =⇒ fr ◦ CallReturnS(fe) ∼ popS(τr, τe〈〈pushS(τr)〉〉) (219)

However, it suffices to prove constraint shown below (details omitted for
brevity).

∀gc, ptg1 ∈ Gc, ptg1 � τr〈gc〉 =⇒ τe〈ptg1〉 � (τe〈〈τr〉〉)〈gc〉 (220)

Since ptg1 � τr〈gc〉, there exists a function h s.t., ptg1 �h τr〈gc〉. Define a
function h′ : V1

e 7→ Vabsx
c as follows (note that V1

e = Vc1] IVe):

∀x ∈ V1
e. h′(x) =

{
h(x), x ∈ Vc1
x, x ∈ IVe

Lemma 23. τr �Vars
id τe〈〈τr〉〉Sa

Proof. Directly follows from the definition of τe〈〈τr〉〉Sa = τe〈〈τr, ηa〉〉.

Lemma 24.

∀gc, ptg1 ∈ Gc, ∀x ∈ (IVe ∪ EVe),

ptg1 �h τr〈gc〉 ∧ u ∈ η[[τe, ptg1]](x) =⇒ (∃n ∈ ηa(x) s.t. h′(u) ∈ η[[τe〈〈τr〉〉, gc]](n))

Proof. We prove this by inducting over the iterations in the computation of
η[[τe, ptg1]]. If µi denotes the value of µ computed at the end of iteration i, i ≥ 0
then,

η[[τe, ptg1]] = µj [[τe, ptg1]] where,

j is the smallest integer such that µj−1 = µj . (221)

Claim. Given gc = (Vc,Ec, σc) ∈ Gc, x ∈ (IVe ∪ EVe),

ptg1 � τr〈gc〉 ∧ u ∈ µi[[τe, ptg1]](x) =⇒
(∃n ∈ ηa(x) s.t. h′(u) ∈ η[[τe〈〈τr〉〉, gc]](n)) (222)

In (222), ηa is the least solution of the constraints 212-216. Hence the follow-
ing holds.

x ∈ IVe ⇒ x ∈ ηa(x) (223)

x ∈ πe(var)⇒ σr(var) ⊆ ηa(x) (224)

〈u, f, v〉 ∈ EEe, u
′ ∈ ηa(u), 〈u′, f, v′〉 ∈ IEr ⇒ v′ ∈ ηa(v) (225)

〈u, f, v〉 ∈ EEe, ηa(u) ∩ ηa(u′) 6= {}, 〈u′, f, v′〉 ∈ IEe ⇒ ηa(v′) ⊆ ηa(v) (226)

〈u, f, v〉 ∈ EEe, ηa(u) ∩ Escaping(τe〈〈τr, ηa〉〉) 6= {} ⇒ v ∈ ηa(v) (227)

Since τe〈〈τr〉〉 = τe〈〈τr, ηa〉〉 the following holds,

Vabsx = (IVr ∪ EVr) ∪ η̂a(IVe ∪ EVe) (228)

IVabsx = Vabsx ∩ (IVr ∪ IVe) (229)

EVabsx = Vabsx ∩ (EVr ∪ EVe) (230)

IEabsx = IEr ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IEe, v1 ∈ ηa(u), v2 ∈ ηa(v)} (231)

EEabsx = EEr ∪ {〈u′, f, v〉 | 〈u, f, v〉 ∈ EEe, u
′ ∈ ηa(u), escapes(u′)} (232)

πabsx = πr (233)

σabsx = λx. η̂a(σe(x)) (234)

escapes(v) ≡ v ∈ Escaping(τe〈〈τr〉〉Sa) (235)

Also, since η[[τe〈〈τr〉〉, gc]] is a least solution of the constraints 7-10 the follow-
ing holds. In the rest of the proof we denote η[[τe〈〈τr〉〉, gc]] as η′.

x ∈ IVabsx ⇒ x ∈ η′(x) (236)

x ∈ πabsx(V)⇒ σc(V) ∈ η′(x) (237)

〈x, f, y〉 ∈ EEabsx, x
′ ∈ η′(x), 〈x′, f, y′〉 ∈ Ec ⇒ y′ ∈ η′(y) (238)

〈x, f, y〉 ∈ EEabsx, η
′(x) ∩ η′(x′) 6= ∅, 〈x′, f, y′〉 ∈ IEabsx ⇒ η′(y′) ⊆ η′(y) (239)

Base case (iteration 1). Say y ∈ µ1[[τe, ptg1]](x). Since µ0 = ∅, y should
have been added to µ1 by one of the rules internal nodes or parameter nodes
(Constraints 7,8).

Say y was added by the Internal nodes rule (Constraint 7). In this case, the
following must hold.

x ∈ IVe ∧ x = y (240)

We need to show that ∃n ∈ ηa(x) s.t. h′(y) ∈ η[[τe〈〈τr〉〉, gc]](n).

By (223), x ∈ IVe =⇒ x ∈ ηa(x) (241)

By the (229) x ∈ ηa(x) ∧ x ∈ IVe =⇒ x ∈ IVabsx (242)

By (236) x ∈ IVabsx =⇒ x ∈ η′(x) (243)

By the def. of h′ x ∈ IVe =⇒ h′(x) = x (244)

Sub. in (243), h′(x) ∈ η′(x) (245)

Since x = y, h′(y) ∈ η′(x) (246)

From (241) and (245), ∃n ∈ ηa(x) s.t. x ∈ η′(n). In this case n = x.
Now say y was added to µ1[[τe, ptg1]](x) by the Param nodes rule (con-

straint 8). Hence,

x ∈ πe(var) ∧ y = σc1(var) (247)

Since ptg1 �h τr〈gc〉, h(σc1(var)) ∈ σcr(var) (248)

By the def. of 〈〉, ∃w ∈ σr(var), h(σc1(var)) ∈ η[[τr, gc]](w) (249)

By Lemma 23, τr �Vars
id τe〈〈τr〉〉Sa (250)

By Lemma 12, η[[τr, gc]](w) ⊆ η′(w) (251)

Sub. in (249), ∃w ∈ σr(var), h(σc1(var)) ∈ η′(w) (252)

By (224), x ∈ πe(var) =⇒ σr(var) ⊆ ηa(x) (253)

Sub. in (252), ∃w ∈ ηa(v), h(σc1(v)) ∈ η′(w) (254)

Since σc1(v) ∈ Vc1 h′(σc1(v)) = h(σc1(v)) (255)

Sub. in (254), ∃w ∈ ηa(v), h′(σc1(v)) ∈ η′(w) (256)

By (247), ∃w ∈ ηa(v), h′(y)) ∈ η′(w) (257)

Hence the claim holds in the base case.
Induction Step. Assume that the claim holds for all iterations from 1 to i−1.

Now consider the case where y′ is added in the ith iteration by one of the four
rules (7-10). If y′ is added by the internal nodes rule or the parameter nodes rule
then the claim holds by the proof shown for the base case. Hence, consider the
cases wherein y′ is added by the external edge rule or the alias rule.

Case(1) Say y′ is added by the external edge rule (9). The following must
hold in this case.

〈x, f, y〉 ∈ EEe ∧ x′ ∈ µi−1[[τe, ptg1]](x) ∧ 〈x′, f, y′〉 ∈ Ec1 (258)

We need to show that,

∃n ∈ ηa(y) s.t. h′(y′) ∈ η′(n) (259)

Since x′ ∈ µi−1[[τe, ptg1]](x), by the inductive hypothesis,

∃m ∈ ηa(x) s.t. h′(x′) ∈ η′(m) (260)

Now consider the following two cases:
Case(1.1) m ∈ Escaping(τe〈〈τr〉〉).

Since m ∈ ηa(x), ηa(x) ∩ Escaping(τe〈〈τr, ηa〉〉) 6= ∅ (261)

Given, 〈x, f, y〉 ∈ EEe (262)

By the Constraint (227), (261) and (262) implies that, y ∈ ηa(y). Hence, to prove
(259) it suffices to prove that,

h′(y′) ∈ η[[τe〈〈τr〉〉, gc]](y)

Given, 〈x′, f, y′〉 ∈ Ec1 (263)

Since, ptg1 �h τr〈gc〉, 〈h(x′), f, h(y′)〉 ∈ Ecr (264)

Since, x′, y′ ∈ Vc1 , h(x′) = h′(x′) ∧ h(y′) = h′(y′) (265)

Hence, 〈h′(x′), f, h′(y′)〉 ∈ Ecr (266)

By the definition of 〈〉, 〈h′(x′), f, h′(y′)〉 ∈ Ecr only because at least one of the
following conditions hold.

(i) 〈h′(x′), f, h′(y′)〉 ∈ Ec (267)

(ii) ∃w, u s.t. h′(x′) ∈ η[[τr, gc]](w) ∧ h′(y′) ∈ η[[τr, gc]](u)

〈w, f, u〉 ∈ IEr (268)

(i) Say 〈h′(x′), f, h′(y′)〉 ∈ Ec.

Given, 〈x, f, y〉 ∈ EEe (269)

We have assumed that, m ∈ ηa(x) ∧m ∈ Escaping(τe〈〈τr〉〉) (270)

By Constraint (232), (269) and (270) imply that, 〈m, f, y〉 ∈ EEabsx.

By (260), h′(x′) ∈ η′(m) (271)

We have assumed that, 〈h′(x′), f, h′(y′)〉 ∈ Ec (272)

By the external edge rule of η construction, (271),(272) and 〈m, f, y〉 ∈ EEabsx

imply that h′(y′) ∈ η′(y).
(ii) Consider the case where,

∃w, u s.t. h′(x′) ∈ η[[τr, gc]](w) ∧ h′(y′) ∈ η[[τr, gc]](u) ∧ 〈w, f, u〉 ∈ IEr

By Lemma 23, τr �Vars
id τe〈〈τr〉〉 (273)

Hence, h′(x′) ∈ η[[τr, gc]](w) =⇒ h′(x′) ∈ η′(w), (274)

h′(y′) ∈ η[[τr, gc]](u) =⇒ h′(y′) ∈ η′(u) (275)

By (260), h′(x′) ∈ η′(m) ∧m ∈ ηa(x) (276)

Hence, from (274) and (276), η′(m) ∩ η′(w) 6= ∅.

Given, 〈x, f, y〉 ∈ EEe (277)

We have assumed that, m ∈ ηa(x) ∧m ∈ Escaping(τe〈〈τr〉〉) (278)

By Constraint (232), (277) and (278) imply that, 〈m, f, y〉 ∈ EEabsx. By
Constraint (231), 〈w, f, u〉 ∈ IEr implies that 〈w, f, u〉 ∈ IEabsx.

Hence, η′(m)∩ η′(w) 6= ∅, 〈m, f, y〉 ∈ EEabsx and 〈w, f, u〉 ∈ IEabsx. Therefore,
by (239),

η′(u) ⊆ η′(y) (279)

By (275), h′(y′) ∈ η′(u) (280)

By (279), h′(y′) ∈ η′(y) (281)

Case(1.2) m /∈ Escaping(τe〈〈τr〉〉).

By Lemma 19, m ∈ IVabsx (282)

By the def. of η, η′(m) = {m} (283)

By (260), h′(x′) ∈ η′(m) ∧m ∈ ηa(x) (284)

By (283), h′(x′) = m (285)

It is given that 〈h′(x′), f, h′(y′)〉 ∈ Ecr. By (285), 〈m, f, h′(y′)〉 ∈ Ecr. By the
definition of 〈〉, 〈m, f, h′(y′)〉 ∈ Ecr only if at least one of the following conditions
hold.

(i) 〈m, f, h′(y′)〉 ∈ Ec (286)

(ii) ∃w, u s.t. m ∈ η[[τr, gc]](w), h′(y′) ∈ η[[τr, gc]](u),

〈w, f, u〉 ∈ IEr (287)

Since m ∈ IVabsx, case(i) is not possible (as m /∈ Vc). Hence, case(II) is only
possible.

By Lemma 23, τr �Vars
id τe〈〈τr〉〉 (288)

by Lemma 12, m ∈ η′(w) (289)

By (283), m ∈ η′(m) (290)

Hence, η′(w) ∩ η′(m) 6= ∅ (291)

By Lemma 21 and (291), if w 6= m then w,m ∈ Escaping(τe〈〈τr〉〉) (292)

But it is given that, m /∈ Escaping(τe〈〈τr〉〉) (293)

Hence, w = m (294)

By (287) and (294), ∃u s.t. h′(y′) ∈ η[[τr, gc]](u), 〈m, f, u〉 ∈ IEr (295)

By Lemma 23, τr �Vars
id τe〈〈τr〉〉 (296)

by Lemma 12, h′(y′) ∈ η[[τr, gc]](u) =⇒ h′(y′) ∈ η′(u) (297)

Given, m ∈ ηa(x), 〈x, f, y〉 ∈ EEe, 〈m, f, u〉 ∈ IEr (298)

By Constraint (225), u ∈ ηa(y) (299)

From (297) and (299), ∃u ∈ ηa(y) s.t. h′(y′) ∈ η′(u) (300)

Case(2) Now say t is added to µi[[τe, ptg1]](y) by the (alias rule) (con-
straint 57). Therefore, the following must hold.

〈x, f, y〉 ∈ EEe ∧ 〈x′, f, y′〉 ∈ IEe∧
µi−1[[τe, ptg1]](x) ∩ µi−1[[τe, ptg1]](x′) 6= ∅∧

t ∈ µi−1[[τe, ptg1]](y′) (301)

We need to show that,

t ∈ µi−1[[τe, ptg1]](y′) =⇒ ∃n ∈ ηa(y) s.t. h′(t) ∈ η′(n) (302)

By the inductive hypothesis,

s ∈ µi−1[[τe, ptg1]](y′) =⇒ ∃m ∈ ηa(y′) s.t. h′(s) ∈ η′(m) (303)

µi−1[[τe, ptg1]](x) ∩ µi−1[[τe, ptg1]](x′) 6= ∅ =⇒
∃u ∈ ηa(x), w ∈ ηa(x′) s.t. η′(u) ∩ η′(w) 6= ∅ (304)

Case(2.1) u ∈ Escaping(τe〈〈τr〉〉).

Since u ∈ ηa(x), ηa(x) ∩ Escaping(τe〈〈τr, ηa〉〉) 6= ∅ (305)

Given, 〈x, f, y〉 ∈ EEe (306)

By Constraint 227, (305) and (306) implies that y ∈ ηa(y). Hence, to prove (302)
it suffices to prove that,

t ∈ µi−1[[τe, ptg1]](y′) =⇒ h′(t) ∈ η′(y) (307)

We have,

〈x, f, y ∈ EEe〉 (308)

By (304), u ∈ ηa(x) (309)

u ∈ Escaping(τe〈〈τr, ηa〉〉) (310)

By Constraint (232), 〈u, f, y〉 ∈ EEabsx (311)

Given, 〈x′, f, y′〉 ∈ IEe (312)

By Constraint (231), ηa(x′)× f × ηa(y′) ∈ IEabsx (313)

By (304), w ∈ ηa(x′) (314)

By (313) and (314), {w} × f × ηa(y′) ∈ IEabsx (315)

By the Constraint (226), (304),(311) and (315) imply that,

∀z ∈ ηa(y′), η′(z) ⊆ η′(y) (316)

Form (303),

s ∈ µi−1[[τe, ptg1]](y′) =⇒ ∃m ∈ ηa(y′) s.t. h′(s) ∈ η′(m) (317)

Therefore, from (316) and (317), we have

s ∈ µi−1[[τe, ptg1]](y′) =⇒ h′(s) ∈ η′(y) (318)

Case(2.2) u /∈ Escaping(τe〈〈τr〉〉).

By Lemma 19, u ∈ IVabsx (319)

By the def. of 〈〉, η′(u) = {u} (320)

Sub. in (304), we get, u ∈ η′(w) where, w ∈ ηa(x′) (321)

From (320) and (321), η′(w) ∩ η′(u) 6= ∅ (322)

By Lemma 21, u 6= w ∧ η′(w) ∩ η′(u) 6= ∅
=⇒ u,w ∈ Escaping(τe〈〈τr〉〉) (323)

We have assumed that, u /∈ Escaping(τe〈〈τr〉〉) (324)

Therefore, u = w (325)

From (304), u ∈ ηa(x) ∧ w ∈ ηa(x′) (326)

Using (325), u ∈ ηa(x) ∧ u ∈ ηa(x′) (327)

Hence, ηa(x) ∩ ηa(x′) (328)

By Constraint (226), 〈x, f, y〉 ∈ EEe, 〈x′, f, y′〉 ∈ IEe and (328) imply that,

ηa(y′) ⊆ ηa(y) (329)

By the inductive hypothesis,

s ∈ µi−1[[τe, ptg1]](y′) =⇒ ∃m ∈ ηa(y′) s.t. h′(s) ∈ η′(m) (330)

From (329) and (330),

s ∈ µi−1[[τe, ptg1]](y′) =⇒ ∃m ∈ ηa(y) s.t. h′(s) ∈ η′(m) (331)

Hence, the claim holds in the ith iteration implying that it will hold in all iter-
ations. Hence the lemma.

Lemma 25. Let S be a procedure call Call P (v1, · · · , vk).

fr ∼ τr ∧ fe ∼ τe =⇒ fr ◦ CallReturnS(fe) ∼ τe〈〈τr〉〉Sa (332)

Proof. As explained earlier, to prove (332) it suffices to prove the following
implication.

∀gc, ptg1 ∈ Gc, ptg1 � τr〈gc〉 =⇒ τe〈ptg1〉) � (τe〈〈τr〉〉)〈gc〉 (333)

As before, let h′ : V1
e 7→ Vabsx

c denote

∀x ∈ Vce. h′(x) =

{
h(x), x ∈ Vc1
x, x ∈ Ve

As mentioned earlier we use the following naming conventions:

τe〈〈τr〉〉 = (EVabsx,EEabsx, πabsx, IVabsx, IEabsx, σabsx)

gc = (Vc,Ec, σc)

ptg1 = (Vc1 ,Ec1 , σc1)

τr〈gc〉 = (Vcr,E
c
r, σ

c
r)

τe〈ptg1〉 = (V1
e,E

1
e, σ

1
e)

(τe〈〈τr〉〉)〈gc〉 = (Vabsx
c,Eabsx

c, σcabsx)

We now prove that, if ptg1 �h τr〈gc〉, h′, as defined above, induces an em-
bedding from τe〈ptg1〉 to (τe〈〈τr〉〉〈gc〉 by proving that the following conditions
hold.

〈x, f, y〉 ∈ E1
e =⇒ 〈h′(x), f, h′(y)〉 ∈ Eabsx

c (334)

∀var ∈ Vars. σcabsx(var) ⊇ ĥ′(σ1
e(var)) (335)

Proof for (334), Say 〈x, f, y〉 ∈ E1
e.

By the construction of 〈〉, 〈x, f, y〉 ∈ E1
e only if at least one of the following

conditions hold:

(a) 〈x, f, y〉 ∈ Ec1 (336)

(b) ∃u,w ∈ (IVe ∪ EVe) s.t.

x ∈ η[[τe, ptg1]](u), y ∈ η[[τe, ptg1]](w), 〈u, f, w〉 ∈ IEe (337)

Consider the case where 〈x, f, y〉 ∈ Ec1 ,

Since ptg1 �h τr〈gc〉, 〈h(x), f, h(y)〉 ∈ Ecr (338)

By Lemma 23, τr �Vars
id τe〈〈τr〉〉 (339)

From Corollary 2, τr〈gc〉 �Vars
id (τe〈〈τr〉〉)〈gc〉 (340)

Therefore by (338), 〈h(x), f, h(y)〉 ∈ Eabsx
c (341)

Given that, 〈x, f, y〉 ∈ Ec1 (342)

Which implies that, x, y ∈ Vc1 (343)

By the def. of h′, h′(x) = h(x) and h′(y) = h(y) (344)

Sub. in (341), 〈h′(x), f, h′(y)〉 ∈ Eabsx
c (345)

Now consider the case where,

∃u,w ∈ (IVe ∪ EVe) s.t.

x ∈ η[[τe, ptg1]](u), y ∈ η[[τe, ptg1]](w), 〈u, f, w〉 ∈ IEe

By the def. of τe〈〈τr〉〉, 〈u, f, w〉 ∈ IEe =⇒
ηa(u)× f × ηa(w) ⊆ IEabsx (346)

By Lemma 24, ptg1 �h τr〈gc〉 ∧ x ∈ η[[τe, ptg1]](u)

=⇒ ∃n ∈ ηa(u) s.t. h′(x) ∈ η[[τe〈〈τr〉〉, gc]](n) (347)

Similarly, ∃m ∈ ηa(w) s.t. h′(y) ∈ η[[τe〈〈τr〉〉, gc]](m) (348)

By (346), n ∈ ηa(u) ∧m ∈ ηa(w) =⇒ 〈n, f,m〉 ∈ IEabsx

(349)

By the definition of 〈〉, (347), (348) and (349) imply that,

〈h′(x), f, h′(y)〉 ∈ Eabsx
c

Proof for (335), ∀var ∈ Vars. σcabsx(var) ⊇ ĥ′(σce(var))
Say x = σce(var),

By the def. of 〈〉, ∃w ∈ σe(v) ∧ x ∈ η[[τe〈ptg1〉]](w) (350)

By Lemma 24, ptg1 �h τr〈gc〉 ∧ x ∈ η[[τe, ptg1]](w)

=⇒ ∃n ∈ ηa(w) s.t. h′(x) ∈ η[[τe〈〈τr〉〉, gc]](n)
(351)

From (350) and (351), n ∈ ηa(w) ∧ w ∈ σe(v) (352)

From the def. of τe〈〈τr〉〉Sa , n ∈ σabsx(v) (353)

From (351) and (353), n ∈ σabsx(v) ∧ h′(x) ∈ η[[τe〈〈τr〉〉, gc]](n) (354)

From the def. of 〈〉, h′(x) ∈ σcabsx(v) (355)

9 Proofs For The Extended Abstract Interpretation

As mentioned in Section 5, in order to support the node merging optimization
we enhance the abstract domain to include an equivalence relation on nodes. We
define the enhanced abstract domain Fm as the set of pairs (τ, ξ) ∈ Fa×P that
satisfy the following conditions:

∀x ∈ Na, x ∈ (EV ∪ IV) =⇒ ξ(x) = x (356)

where P ⊆ Na 7→ Na is a set of functions representing the set of all equivalence
relations on Na. Given a equivalence relation ≡ on Na the function ξ ∈ P that
represents the equivalence relation is given by:

∀x ∈ Na, ξ(x) = max
v

({y | y ≡ x}) (357)

where maxv(N) denotes the maximum element in the set N ⊆ Na w.r.t to a total
order (≤v) on Na. A function ξ ∈ P satisfies the following properties (which are
a direct consequence of (357)):

Property 4. ∀ξ ∈ P,∀x ∈ Na, x ≤v ξ(x)

Property 5. ∀ξ ∈ P,∀x ∈ Na, ξ(x) = ξ(ξ(x))

Given a function ξ ∈ P, the equivalence relation that it represents (denoted
as ≡ξ) is given by:

∀x, y ∈ Na, x ≡ξ y ⇐⇒ ξ(x) = ξ(y) (358)

9.1 The Partial Ordering On Equivalence Relations (Lemma 4)

Define a binary relation ≤p on P as follows: ξ1 ≤p ξ2 iff the equivalence relation
≡ξ1 is a refinement of (or subset of) the equivalence relation ≡ξ2 . The following
lemma gives an equivalent definition.

Lemma 26.

∀ξ1, ξ2 ∈ P, ξ1 ≤p ξ2 ⇐⇒ ξ1 ◦ ξ2 = ξ2 (359)

Given two functions ξ1, ξ2 ∈ P we define a binary operator, denoted by ξ1 tp ξ2,
as the function corresponding to the equivalence relation that is a superset of
≡ξ1 and ≡ξ2 . The following is an equivalent definition of tp.

Lemma 27.

∀ξ1, ξ2 ∈ P, ξ1 tp ξ2 = λx.max
v

(f ′(x)) (360)

where f ′ : Na 7→ 2Na is defined as follows:

f ′ = lfp f where, (361)

f(x) = {x} ∪ {z ∈ Na | ∃y ∈ f(x) s.t.

(ξ1(z) = ξ1(y) ∨ ξ2(z) = ξ2(y))} (362)

Lemma 28. If ξ1 ≤p ξ2 then ξ1 ◦ ξ2 = ξ2 ◦ ξ1 = ξ2.

Proof. Say x ∈ Na.

Since ξ1 ≤p ξ2, ξ1 ◦ ξ2 = ξ2 (363)

Let ξ2(ξ1(x)) = y1 = ξ2(x) (364)

Let ξ1(ξ2(x)) = y2 (365)

Since ξ2(x) = y1, ξ1(y1) = y2 (366)

By the def. of P, y1 ≤v y2 (367)

By (365), ξ2(ξ1(ξ2(x))) = ξ2(y2) (368)

Which reduces to, ξ2(x) = ξ2(y2) (369)

By (364), y1 = ξ2(y2) (370)

Hence, y2 ≤v y1 (371)

By (367) and (371), y1 = y2 (372)

Lemma 29. (a) ≤p is a partial order.
(b) tp is the join operator i.e.the least upper bound operator w.r.t ≤p
(c) The least element in P w.r.t ≤p is ⊥P = λx.x.

Proof. (a) ≤p is a partial order.
(i) ≤p is Reflexive. Let ξ1 ∈ P. Since ξ1 is idempotent ξ1 ◦ ξ1 = ξ1. Hence,

ξ1 ≤p ξ1.
(ii) ≤p is anti-symmetric. Let ξ1, ξ2 ∈ P such that ξ1 ≤p ξ2 and ξ2 ≤p ξ1.

Since ξ1 ≤p ξ2, ξ1 ◦ ξ2 = ξ2 (373)

By Lemma 28, ξ2 ◦ ξ1 = ξ2 (374)

Since ξ2 ≤p ξ1, ξ2 ◦ ξ1 = ξ1 (375)

By (374) and (375) ξ1 = ξ2 (376)

(iii) ≤p is transitive. Let ξ1, ξ2, ξ3 ∈ P such that ξ1 ≤p ξ2 and ξ2 ≤p ξ3.

Since ξ1 ≤p ξ2, ξ1 ◦ ξ2 = ξ2 (377)

Since ξ2 ≤p ξ3, ξ2 ◦ ξ3 = ξ3 (378)

Sub. (377) in (378), (ξ1 ◦ ξ2) ◦ ξ3 = ξ3 (379)

Since ◦ is associative, ξ1 ◦ (ξ2 ◦ ξ3) = ξ3 (380)

By (378), ξ1 ◦ ξ3 = ξ3 (381)

(b) tp is the least upper bound operator. We need to show that the
following two properties hold: ∀ξ1, ξ2, ξ′ ∈ P,

ξ1 ≤p (ξ1 tp ξ2) and ξ2 ≤p (ξ1 tp ξ2) (382)

ξ1 ≤p ξ′ ∧ ξ2 ≤p ξ′ =⇒ (ξ1 tp ξ2) ≤p ξ′ (383)

We assume that the fix point of the function f is computed iteratively start-
ing from f = ∅. The value of f at the end of iteration i is denoted using f i

(f0 = ∅).

Proof of (382). Let ξj = ξ1tp ξ2. We first prove that ξ1 ≤p ξj i.e, ξ1 ◦ ξj = ξj .
From the def. of tp, it suffices to prove that f ′(x) = f ′(ξ1(x)). We prove this by
inducting over the iterations in the computation of f(x).

Claim: ∀i ∈ N, f i(x) ⊆ f ′(ξ1(x)).

Base case (iteration 1): f1(x) = {x}. We now show that x ∈ f ′(ξ1(x)).

By the def. of f ′, ξ1(x) ∈ f ′(ξ1(x)) (384)

Since ξ1 is idempotent, ξ1(ξ1(x)) = ξ1(x) (385)

Hence, ∃y ∈ f ′(ξ1(x)) s.t. ξ1(x) = ξ1(y) (y = ξ1(x)) (386)

Which implies that, x ∈ f ′(ξ1(x)) (387)

induction step (iteration i+1): Say z ∈ f i+1(x)

By the def. of f , ∃y ∈ f i(x) s.t. (ξ1(z) = ξ1(y) ∨ ξ2(z) = ξ2(y))
(388)

By inductive hypothesis, f i(x) ⊆ f ′(ξ1(x)) (389)

Hence, ∃y ∈ f ′(ξ1(x)) s.t. (ξ1(z) = ξ1(y) ∨ ξ2(z) = ξ2(y))
(390)

Which implies that, z ∈ f ′(ξ1(x)) (391)

Similarly, it can be proved that f ′(ξ1(x)) ⊆ f ′(x). Hence, f ′(x) = f ′(ξ1(x)).
Therefore ξ1 ≤p ξj . By a similar argument ξ2 ≤p ξj .

Proof of (383). We first prove that, if ξ1 ≤p ξ′ and ξ2 ≤p ξ′ then,

∀x ∈ Na, y ∈ f ′(x) =⇒ ξ′(x) = ξ′(y)

We prove this using induction over the iterations in the computation of f ′.

Claim: if ξ1 ≤p ξ′ and ξ2 ≤p ξ′ then ∀i ∈ N, y ∈ f i(x) =⇒ ξ′(x) = ξ′(y).

Base case (iteration 1): f1(x) = {x}. We know that ξ′(x) = ξ′(x)
induction step (iteration i+1): Say z ∈ f i+1(x)

By the def. of f , ∃y ∈ f i(x) s.t. (ξ1(z) = ξ1(y) ∨ ξ2(z) = ξ2(y))
(392)

By inductive hypothesis, ξ′(y) = ξ′(x) (393)

By (392), ξ′(y) = ξ′(x) ∧ (ξ1(z) = ξ1(y) ∨ ξ2(z) = ξ2(y))
(394)

Since ξ1 ≤p ξ′ and ξ2 ≤p ξ′, ξ1(z) = ξ1(y) ∨ ξ2(z) = ξ2(y) =⇒
ξ′(z) = ξ′(y) (395)

Sub. in (394), ξ′(y) = ξ′(x) ∧ ξ′(z) = ξ′(y) (396)

Which implies that, ξ′(x) = ξ′(z) (397)

Now we prove that ξj ≤p ξ′ i.e, ξj ◦ ξ′ = ξ′.

By the def. of ξ1 tp ξ2, ξj(x) = max
v

(f ′(x)) ∈ f ′(x) (398)

Proved before, ∀x ∈ Na, y ∈ f ′(x) =⇒ ξ′(x) = ξ′(y) (399)

Hence, ξ′(ξj(x)) = ξ′(x) (400)

9.2 The Extended Abstract Domain

Partial Order. Define a binary relation ≤m on Fm as follows: (τ1, ξ1) ≤m
(τ2, ξ2) iff

ξ1 ≤p ξ2 (401)

τ1 �ξ2 τ2 (402)

Lemma 30. ≤m induces a partial order on Fm i.e, ≤m is reflexive, anti-symmetric
and transitive.

Proof. (i) ≤m is reflexive.
Say (τ1, ξ1) ∈ Fm. Since ≤p is a partial order ξ1 ≤p ξ1. By the def. of Fm,

since (τ1, ξ1) ∈ Fm,

x ∈ (EV1 ∪ IV1) =⇒ ξ1(x) = x (403)

Which implies that, τ1 �ξ1 τ1 (404)

Hence, (τ1, ξ1) ≤m (τ1, ξ1).

(ii) ≤m is anti-symmetric.
Say (τ1, ξ1) ≤m (τ2, ξ2) and (τ2, ξ2) ≤m (τ1, ξ1). We first show that ξ1 = ξ2.

Since (τ1, ξ1) ≤m (τ2, ξ2), ξ1 ≤p ξ2 (405)

Since (τ2, ξ2) ≤m (τ1, ξ1), ξ2 ≤p ξ1 (406)

Since ≤p is a partial order, ξ1 = ξ2 (407)

We now show that τ1 = τ2.

By property (356), x ∈ (EV1 ∪ IV1) =⇒ ξ1(x) = x (408)

By (407), x ∈ (EV1 ∪ IV1) =⇒ ξ2(x) = x (409)

By def. of ≤m, τ1 �ξ2 τ2 (410)

By (409), τ1 vco τ2 (411)

Similarly, τ2 �ξ1 τ1 implies, τ2 vco τ1 (412)

By (411) and (412), τ1 = τ2 (413)

Hence, (τ1, ξ1) = (τ2, ξ2).

(iii) ≤m is transitive.
Say (τ1, ξ1) ≤m (τ2, ξ2) and (τ2, ξ2) ≤m (τ3, ξ3). We now show that (τ1, ξ1) ≤m

(τ3, ξ3) by proving that the conditions (401) and (402) holds. Condition (401)
holds as ≤p is a partial oder and hence transitive i.e, ξ1 ≤p ξ2 and ξ2 ≤p ξ3
imply that ξ1 ≤p ξ3. We now show that Condition (402) also holds.

Since (τ1, ξ1) ≤m (τ2, ξ2), τ1 �ξ2 τ2 (414)

Since (τ2, ξ2) ≤m (τ3, ξ3), τ2 �ξ3 τ3 (415)

By the prop. of �, τ1 �ξ2◦ξ3 τ3 (416)

Since ξ2 ≤p ξ3, ξ2 ◦ ξ3 = ξ3 (417)

Sub. in (416), τ1 �ξ3 τ3 (418)

Join operator. Define a function apply : P × Fa 7→ Fa as follows: Let
τ = (EV,EE, π, IV, IE, σ) and ξ ∈ P.

apply(ξ, τ) = (EVm,EEm, πm, IVm, IEm, σm) where,

IVm = {ξ(x) | x ∈ IV}
EVm = {ξ(x) | x ∈ EV}
EEm = {〈ξ(x), f, ξ(y)〉 | 〈x, f, y〉 ∈ EE}
IEm = {〈ξ(x), f, ξ(y)〉 | 〈x, f, y〉 ∈ IE}

πm(var) = {ξ(x) | x ∈ π(var)}
σm(var) = {ξ(x) | x ∈ σ(var)}

From the definition of apply , it is clear that, τ �ξ apply(ξ, τ).

Define a binary operator tm on Fm as follows: for all (τ1, ξ1), (τ2, ξ2) ∈ Fm

(τ1, ξ1) tm (τ2, ξ2) = (apply(ξ1 tp ξ2, τ1 tco τ2), ξ1 tp ξ2)

Lemma 31. (Fm,≤m,tm) is a join semi-lattice

Proof. For all (τ1, ξ1), (τ2, ξ2), (τ ′, ξ′) ∈ Fm, we need to show that the following
two properties hold:

(τ1, ξ1) ≤m (τ1, ξ1) tm (τ2, ξ2) (419)

(τ2, ξ2) ≤m (τ1, ξ1) tm (τ2, ξ2) (420)

(τ1, ξ1) ≤m (τ ′, ξ′) ∧ (τ2, ξ2) ≤m (τ ′, ξ′) =⇒ (τ1, ξ1) tm (τ2, ξ2) ≤m (τ ′, ξ′)
(421)

Let ξj = ξ1 tp ξ2. Proof of (419).
(i) By the property of join, ξ1 ≤p ξj and ξ2 ≤p ξj .
(ii) Proof of τ1 �ξj apply(ξj , τ1 tco τ2).

By the def. of tco, τ1 �id (τ1 tco τ2) (422)

By the def. of apply , (τ1 tco τ2) �ξj apply(ξj , τ1 tco τ2) (423)

Hence, τ1 �ξj apply(ξj , τ1 tco τ2) (424)

Similarly, τ2 �ξj apply(ξj , τ1 tco τ2).

Proof of (421). Let

τ1 = (EV1,EE1, π1, IV1, IE1, σ1)

τ2 = (EV2,EE2, π2, IV2, IE2, σ2)

τ1 tco τ2 = τco = (EVco,EEco, πco, IVco, IEco, σco)

apply(ξj , τ1 tco τ2) = τj = (EVj ,EEj , πj , IVj , IEj , σj)

By the property of join, ξ1 ≤p ξ′, ξ2 ≤p ξ′ imply that ξj ≤p ξ′. Hence, it
suffices to prove that, τj �ξ′ τ ′.

Say 〈u, f, w〉 ∈ (EEj ∪ IEj). We now show that 〈ξ′(u), f, ξ′(w)〉 ∈ (EE′ ∪ IE′).

By the def. of apply , ∃〈x, f, y〉 ∈ (EEco ∪ IEco) s.t.

u = ξj(x) ∧ w = ξj(y) (425)

By the def. of tco, (EEco ∪ IEco) = (EV1 ∪ IV1) ∪ (EV2 ∪ IV2) (426)

Hence, 〈x, f, y〉 ∈ (EV1 ∪ IV1) or 〈x, f, y〉 ∈ (EV2 ∪ IV2). Since (τ1, ξ1) ≤m
(τ ′, ξ′) and (τ2, ξ2) ≤m (τ ′, ξ′), τ1 �ξ′ τ ′ and τ2 �ξ′ τ ′. Therefore,

〈ξ′(x), f, ξ′(y)〉 ∈ (EV′ ∪ IV′) (427)

Since ξj ≤p ξ′, ξj ◦ ξ′ = ξ′ (428)

Sub in (427), 〈ξ′(ξj(x)), f, ξ′(ξj(y))〉 ∈ (EV′ ∪ IV′) (429)

By (425), 〈ξ′(u), f, ξ′(w)〉 ∈ (EE′ ∪ IE′) (430)

Similarly, it can be shown that ∀var ∈ Vars. ξ̂′(σj(var)) ⊆ σ′(var).

9.3 Monotonicity Of γM (Lemma 5)

Let (τ1, ξ1) ∈ Fm, we define the concretization function γM as γM ((τ1, ξ1)) =
γT (τ1).

Lemma 32. (τ1, ξ1) ≤m (τ2, ξ2) =⇒ γM ((τ1, ξ1)) vc γM ((τ2, ξ2))

Proof.

By the def. of γM , γM ((τ1, ξ1)) = γT (τ1) (431)

γM ((τ2, ξ2)) = γT (τ2) (432)

Since (τ1, ξ1) ≤m (τ2, ξ2), τ1 �ξ2 τ2 (433)

By Lemma 3, γT (τ1) vc γT (τ2) (434)

9.4 Correctness of Abstract Transformers (Lemma 6)

Abstract transfer functions.
As mentioned in Section 5, the abstract semantics ([[S]]m) for every statement

other than a method call statement is given by:

[[S]]m((τ, ξ)) = (τ ′, ξ) where, (435)

τ ′ = apply(ξ, [[S]]a(τ)) (436)

The abstract semantics of a procedure call statement S is given by,

(τe, ξe)〈〈(τr, ξr)〉〉Sm = (τ ′, ξr tp ξe) where, (437)

τ ′ = apply(ξr tp ξe, popS(τr, τe〈〈pushS(τr)〉〉)) (438)

Lemma 33. Let S be any statement other than the method call statement. If
f ∈ Fc and (τ, ξ) ∈ Fm then

f ∼ (τ, ξ) =⇒ f ◦ [[S]]c ∼ [[S]]m((τ, ξ))

Proof. Let [[S]]m((τ, ξ)) = (τ ′, ξ) where, τ ′ = apply(ξ, [[S]]a(τ)). By the def. of
apply , [[S]]a(τ) �ξ τ ′. Hence, the claim follows from Lemma 2 and Lemma 14.

Lemma 34. Let S be a method call statement. If fr, fe ∈ Fc and (τr, ξr), (τe, ξe) ∈
Fm then

fr ∼ (τr, ξr) ∧ fe ∼ (τe, ξe) =⇒ fr ◦ CallReturnS(fe) ∼ (τe, ξe)〈〈(τr, ξr)〉〉Sm
Proof. Let (τe, ξe)〈〈(τr, ξr)〉〉Sm = (τ ′, ξrtpξe) where, τ ′ = apply(ξrtpξe, popS(τr, τe〈〈pushS(τr)〉〉)).
By the def. of apply , popS(τr, τe〈〈pushS(τr)〉〉) �ξrtpξe τ

′. Hence, the claim fol-
lows from Lemma 2 and Lemma 14.

9.5 Monotonicity of Abstract Transformers (Lemma 7)

In the rest the section we use the following naming convention.

τ1 = (EV1,EE1, π1, IV1, IE1, σ1)

τ2 = (EV2,EE2, π2, IV2, IE2, σ2)

[[S]]a(τ1) = τ1a = (EV1a ,EE1a , π1a , IV1a , IE1a , σ1a)

[[S]]a(τ2) = τ2a = (EV2a ,EE2a , π2a , IV2a , IE2a , σ2a)

τ1m = (EV1m ,EE1m , π1m , IV1m , IE1m , σ1m)

τ2m = (EV2m ,EE2m , π2m , IV2m , IE2m , σ2m)

[[S]]m((τ1, ξ1)) = (τ1m , ξ1m)

[[S]]m((τ2, ξ2)) = (τ2m , ξ2m)

Consider a statement S other than a procedure call statement. Let (τ1, ξ1), (τ2, ξ2) ∈
Fm and (τ1, ξ1) ≤m (τ2, ξ2). From the abstract semantics of S, ξ1m = ξ1,
ξ2m = ξ2. Hence, ξ1 ≤p ξ2 imply that ξ1m ≤p ξ2m . Therefore, to prove mono-
tonicity of [[S]]m (w.r.t ≤m) it suffices to prove the following:

(τ1, ξ1) ≤m (τ2, ξ2) =⇒ τ1m �ξ2 τ2m (439)

We now state and prove a lemma that applies to all statements in our lan-
guage other than the procedure call statement.

Lemma 35. Let S be any statement other than a procedure call statement. Let
τ1 = (EV1,EE1, π1, IV1, IE1, σ1) and τ2 = (EV2,EE2, π2, IV2, IE2, σ2). If [[S]]a(τ1)
and [[S]]a(τ2) are of the form,

[[S]]a(τ1) = (EV1 ∪ EVnew1 ,EE1 ∪ EEnew1 , π, IV1 ∪ IVnew1 , IE1 ∪ IEnew1 ,

λvar.(var ∈ Varsmod → newmap1(var) | σ1(var))

[[S]]a(τ2) = (EV2 ∪ EVnew2 ,EE2 ∪ EEnew2 , π, IV2 ∪ IVnew2 , IE2 ∪ IEnew2 ,

λvar.(var ∈ Varsmod → newmap2(var) | σ2(var))

and if (τ1, ξ1) ≤m (τ2, ξ2) then

(i) 〈x, f, y〉 ∈ (EEnew1
∪ IEnew1

) =⇒ ∃〈x′, f, y′〉 ∈ (EEnew2
∪ IEnew2

) s.t.

ξ2(x) = ξ2(x′) ∧ ξ2(y) = ξ2(y′)

(ii) var ∈ Varsmod =⇒ ξ̂2(newmap1(var)) ⊆ ξ̂2(newmap2(var))

Proof. The overall structure of the proof is as follows, for every statement S in
our language other than the procedure call statement we first express its abstract
semantics ([[S]]a) in the form shown in the lemma statement and determine the
values of the sets (also referred to as entities) EVnewi

,EEnewi
, IVnewi

, IEnewi
and

newmapi for i ∈ {1, 2}. We then prove that the property mentioned in the lemma
holds for each of the entities.

(I) S : v1 = v2.
Form the def. of [[S]]a, EEnew1

, IEnew1
are empty,

Varsmod = {v1}
newmap1(v1) = σ1(v2)

newmap2(v1) = σ2(v2)

Part(i) trivially holds as (EEnew1
∪ IEnew1

= ∅). To prove Part(ii) we need to

show that, x ∈ newmap1(v1) =⇒ ξ2(x) ∈ ξ̂2(newmap2(v1)).

By the def. of [[S]]a, x ∈ newmap1(v1) =⇒ x ∈ σ1(v2) (440)

Since (τ1, ξ1) ≤m (τ2, ξ2), x ∈ σ1(v2) =⇒ ξ2(x) ∈ σ2(v2) (441)

Hence, ξ2(x) ∈ newmap2(v1) (442)

Since ξ2 is idempotent, ξ2(x) ∈ ξ̂2(newmap2(v1)) (443)

(II) S : ` : v = new C.
In this case,

Varsmod = {v}
newmap1(v) = newmap2(v) = {n`}

IEnew1
= IEnew2

= {n`} × Fields× {Null}

Proof of Part(i). Say 〈n`, f,Null〉 ∈ IEnew1
.

Given, 〈n`, f,Null〉 ∈ IEnew2
(444)

Hence, ∃x′, f, y′ ∈ IEnew2
s.t. ξ2(n`) = ξ2(x′) ∧ ξ2(Null) = ξ2(y′)

where, x′ = n` ∧ y′ = Null (445)

Since newmap1(v) = newmap2(v) = {n`}, Part(ii) also holds.
(III) S : v1.f = v2.
In this case, newmap1 and newmap2 are empty,

IEnew1
= σ1(v1)× {f} × σ1(v2)

IEnew2
= σ2(v1)× {f} × σ2(v2)

Proof of Part(i). Say 〈x, f, y〉 ∈ IEnew1
.

By the def. of IEnew1
, x ∈ σ1(v1) ∧ y ∈ σ1(v2) (446)

Since (τ1, ξ1) ≤m (τ2, ξ2), ξ2(x) ∈ σ2(v1) ∧ ξ2(y) ∈ σ2(v2) (447)

By the def. of IEnew2
, 〈ξ2(x), f, ξ2(y)〉 ∈ IEnew2

(448)

By idempotence of ξ2, ∃x′, f, y′ ∈ IEnew2
s.t. ξ2(x) = ξ2(x′) ∧ ξ2(y) = ξ2(y′)

(449)

Part(ii) trivially holds as newmap1 = ∅.
(IV) S : ` : v1 = v2.f . The abstract semantics of S ([[S]]a(τi), i ∈ {1, 2}) is

given by,

let Ai = {n | ∃n1 ∈ σi(v2), 〈n1 , f ,n〉 ∈ IEi} in

let Bi = σi(v2) ∩ Escaping(τi) in

if (Bi = φ)

then (EVi,EEi, πi, IVa, IEi, σi[v1 7→ Ai])

else (EVi ∪ {n`},EEi ∪Bi × {f} × {n`}, πi, IVi, IEi, σi[v1 7→ Ai ∪ {n`}])

Case(a). Consider the case where B1 = φ. In this case, EEnew1 , IEnew1 are
empty,

Varsmod = {v1}
newmap1(v1) = A1

newmap2(v1) ⊇ A2

Part(i) trivially holds as (EEnew1
∪ IEnew1

= ∅). Proof of Part(ii). Say x ∈
newmap1(v1),

By the def. of newmap1, newmap1(v1) = A1 (450)

By the def. of A1, A1 = {n | ∃n1 ∈ σ1(v2), 〈n1, f, n〉 ∈ IE1} (451)

Since x ∈ newmap1(v1), ∃n1 ∈ σ1(v2), 〈n1, f, x〉 ∈ IE1 (452)

Since (τ1, ξ1) ≤m (τ2, ξ2), n1 ∈ σ1(v2) =⇒ ξ2(n1) ∈ σ2(v2) (453)

〈n1, f, x〉 ∈ IE1 =⇒ 〈ξ2(n1), f, ξ2(x)〉 ∈ IE2 (454)

By the def. of A2, ξ2(x) ∈ A2 (455)

Given, A2 ⊆ newmap2(v1) (456)

Hence, ξ2(x) ∈ newmap2(v1) (457)

Since ξ2 is idempotent, ξ2(x) ∈ ξ̂2(newmap2(v1)) (458)

Case(b). Consider the case where B1 6= φ.

By the def. of B1, B1 = σ1(v2) ∩ Escaping(τ1) (459)

Hence, ∃x s.t. x ∈ σ1(v2) ∧ x ∈ Escaping(τ1) (460)

Since (τ1, ξ1) ≤m (τ2, ξ2), ξ2(x) ∈ σ2(v2) (461)

If τ1 �h τ2 then ĥ(Escaping(τ1)) ⊆ Escaping(τ2) (proof not shown for
brevity). Hence, x ∈ Escaping(τ1) implies that ξ2(x) ∈ Escaping(τ2).

Hence, ξ2(x) ∈ σ2(v2) ∩ Escaping(τ2) (462)

By the def. of B2, ξ2(x) ∈ B2 (463)

Hence, x ∈ B1 =⇒ ξ2(x) ∈ B2 (464)

From (464), B1 6= φ =⇒ B2 6= φ. Therefore,

EEnew1
= B1 × {f} × {n`}

newmap1(v1) = A1 ∪ {n`}
EEnew2

= B2 × {f} × {n`}
newmap2(v1) = A2 ∪ {n`}

Proof of Part(i). Say 〈x, f, y〉 ∈ EEnew1 .

By def. of EEnew1 , x ∈ B1 ∧ y = n` (465)

By (464) , ξ2(x) ∈ B2 (466)

By def. of EEnew2 , 〈ξ2(x), f, y〉 ∈ EEnew2 (467)

Hence, ∃x′, f, y′ ∈ IEnew2 s.t. ξ2(x) = ξ2(x′) ∧ ξ2(y) = ξ2(y′)
(468)

Proof of Part(ii). Say x ∈ newmap1(v1).

By the def. of newmap1, x ∈ A1 ∪ {n`} (469)

If x = n` then ξ2(x) ∈ ξ̂2(newmap2(v1)) as n` ∈ newmap2(v1).

If x ∈ A1 then as shown in Case(a) ξ2(x) ∈ ξ̂2(newmap2(v1)).

Lemma 36. Let S be any statement. Let τ1 = (EV1,EE1, π1, IV1, IE1, σ1) and
τ2 = (EV2,EE2, π2, IV2, IE2, σ2). If [[S]]a(τ1) and [[S]]a(τ2) are of the form,

[[S]]a(τ1) = (EV1 ∪ EVnew1
,EE1 ∪ EEnew1

, π, IV1 ∪ IVnew1
, IE1 ∪ IEnew1

,

λvar.(var ∈ Varsmod → newmap1(var) | σ1(var))

[[S]]a(τ2) = (EV2 ∪ EVnew2
,EE2 ∪ EEnew2

, π, IV2 ∪ IVnew2
, IE2 ∪ IEnew2

,

λvar.(var ∈ Varsmod → newmap2(var) | σ2(var))

and if (τ1, ξ1) ≤m (τ2, ξ2) then τ1m �ξ2 τ2m .

Proof. By Lemma 35,

〈x, f, y〉 ∈ (EEnew1 ∪ IEnew1) =⇒ ∃〈x′, f, y′〉 ∈ (EEnew2 ∪ IEnew2) s.t.

ξ2(x) = ξ2(x′) ∧ ξ2(y) = ξ2(y′) (470)

var ∈ Varsmod =⇒ ξ̂2(newmap1(var)) ⊆ ξ̂2(newmap2(var)) (471)

By the def. of [[S]]m,

τ1m = apply(ξ1, [[S]]a(τ1)) (472)

τ2m = apply(ξ2, [[S]]a(τ2)) (473)

Say 〈u, f, w〉 ∈ (EE1m ∪ IE1m).

By (472), ∃x, y. u = ξ2(x), w = ξ2(x), 〈x, f, y〉 ∈ (EE1a ∪ IE1a) (474)

By the assumption about of [[S]]a(τ1), 〈x, f, y〉 ∈ (EE1a ∪ IE1a) implies that at
least one of the following two conditions must hold.

〈x, f, y〉 ∈ (EE1 ∪ IE1) (475)

〈x, f, y〉 ∈ (EEnew1
∪ IEnew2

) (476)

Say condition 475 holds i.e, 〈x, f, y〉 ∈ (EE1 ∪ IE1).

Since τ1 �ξ2 τ2 ξ2(x), f, ξ2(y) ∈ (EE2 ∪ IE2) (477)

Since ξ1 ◦ ξ2 = ξ2 ξ2(ξ1(x)), f, ξ2(ξ1(y)) ∈ (EE2 ∪ IE2) (478)

By (474), ξ2(u), f, ξ2(w) ∈ (EE2 ∪ IE2) (479)

By the assump. about [[S]]a(τ2), ξ2(u), f, ξ2(w) ∈ (EE2a ∪ IE2a) (480)

By (473), ξ2(ξ2(u)), f, ξ2(ξ2(w)) ∈ (EE2m ∪ IE2m)
(481)

Since ξ2 is idempotent, ξ2(u), f, ξ2(w) ∈ (EE2m ∪ IE2m) (482)

Say condition 476 holds i.e, 〈x, f, y〉 ∈ (EEnew1
∪ IEnew1

).

By (470), ∃x′, f, y′ ∈ (EEnew2
∪ IEnew2

) s.t.

ξ2(x) = ξ2(x′) ∧ ξ2(y) = ξ2(y′) (483)

By (473), ξ2(x′), f, ξ2(y′) ∈ (EE2m ∪ IE2m) (484)

By (483), ξ2(x), f, ξ2(y) ∈ (EE2m ∪ IE2m) (485)

Since ξ1 ◦ ξ2 = ξ2 ξ2(ξ1(x)), f, ξ2(ξ1(y)) ∈ (EE2m ∪ IE2m) (486)

By (474), ξ2(u), f, ξ2(w) ∈ (EE2m ∪ IE2m) (487)

Say u ∈ σ1m(var).

By (472), ∃x. u = ξ1(x), x ∈ σ1m(var) (488)

By the assumption about of [[S]]a(τ1), x ∈ σ1m(var) implies that at least one of
the following two conditions must hold.

var /∈ Varsmod ∧ x ∈ σ1(var) (489)

var ∈ Varsmods ∧ x ∈ newmap1(var) (490)

Say condition 489 holds i.e, var /∈ Varsmod ∧ x ∈ σ1(var)

Since τ1 �ξ2 τ2, ξ2(x) ∈ σ2(var) (491)

Since ξ1 ◦ ξ2 = ξ2, ξ2(ξ1(x))) ∈ σ2(var) (492)

By (488), ξ2(u) ∈ σ2(var) (493)

Since var /∈ Varsmod, σ2(u) = σ2a(u) (494)

Sub. in (493), ξ2(u) ∈ σ2a(var) (495)

By (473), ξ2(ξ2(u)) ∈ σ2m(var) (496)

Since ξ2 is idempotent, ξ2(u) ∈ σ2m(var) (497)

Say condition 490 holds i.e, var ∈ Varsmod ∧ x ∈ newmap1(var).

By (471), ξ2(x) ∈ ξ̂2(newmap2(var)) (498)

Since var ∈ Varsmod newmap2(var) = σ2a(var) (499)

By (473), ξ̂2(σ2a(var)) = σ2m(var) (500)

By (499), ξ̂2(newmap2(var)) = σ2m(var) (501)

Hence by (498), ξ2(x) ∈ σ2m(var) (502)

Since ξ1 ◦ ξ2 = ξ2, ξ2(ξ1(x))) ∈ σ2m(var) (503)

By (488), ξ2(u) ∈ σ2m(var) (504)

Hence, for all statement S other than a procedure call statement [[S]]m is
monotonic w.r.t ≤m. We now prove the monotonicity of the procedure call state-
ment.

Lemma 37. If τr �hr
τ ′r and τe �he

τ ′e then

x ∈ η[[τe, τr]](p) ∧ x ∈ (IVe ∪ EVe) =⇒ he(x) ∈ η[[τ ′e, τ
′
r]](he(p))

x ∈ η[[τe, τr]](p) ∧ x ∈ (IVr ∪ EVr) =⇒ hr(x) ∈ η[[τ ′e, τ
′
r]](he(p))

and

x ∈ Escaping(τe〈〈τr〉〉) ∧ x ∈ (IVe ∪ EVe) =⇒ he(x) ∈ Escaping(τ ′e〈〈τ ′r〉〉)
x ∈ Escaping(τe〈〈τr〉〉) ∧ x ∈ (IVr ∪ EVr) =⇒ hr(x) ∈ Escaping(τ ′e〈〈τ ′r〉〉)

Proof. Proof not shown for brevity. This can be easily derived from the definition
of η[[τe, τr]] using the fact that τr �hr τ

′
r and τe �he τ

′
e

Lemma 38. If (τr, ξr) ≤m (τ ′r, ξ
′
r) and (τe, ξe) ≤m (τ ′e, ξ

′
e) then

(apply(ξj , τe〈〈τr〉〉), ξj) ≤m (apply(ξ′j , τ
′
e〈〈τ ′r〉〉), ξ′j)

where ξj = ξr tp ξe and ξ′j = ξ′r tp ξ′e.

Proof. Let

τe〈〈τr〉〉 = (EVa,EEa, πa, IVa, IEa, σa) (505)

τ ′e〈〈τ ′r〉〉 = (EV′a,EE
′
a, π
′
a, IV

′
a, IE

′
a, σ
′
a) (506)

apply(ξj , τe〈〈τr〉〉) = (EVm,EEm, πm, IVm, IEm, σm) (507)

apply(ξ′j , τ
′
e〈〈τ ′r〉〉) = (EV′m,EE

′
m, π

′
m, IV

′
m, IE

′
m, σ

′
m) (508)

We now prove the following two conditions.

ξj ≤p ξ′j (509)

apply(ξj , τe〈〈τr〉〉) �ξ′j apply(ξ′j , τ
′
e〈〈τ ′r〉〉) (510)

Proof of Condition 509. This follows from the property of join.
Proof of Condition 510 which is, Say 〈u, f, w〉 ∈ (EEm ∪ IEm).

By the def. of apply , ∃〈x, f, y〉 ∈ (EEa ∪ IEa) s.t.

ξj(x) = u ∧ ξj(y) = w (511)

Let η = η[[τe, τr]] and η′ = η[[τ ′e, τ
′
r]]. By the def. of τr〈〈τe〉〉, 〈x, f, y〉 ∈ (EEa ∪ IEa)

iff at least one of the following conditions hold.

〈x, f, y〉 ∈ (EEr ∪ IEr) (512)

〈p, f, q〉 ∈ IEe ∧ x ∈ η(p) ∧ y ∈ η(q) (513)

〈p, f, y〉 ∈ EEe ∧ x ∈ η(p) ∧ x ∈ Escaping(τe〈〈τr〉〉) (514)

Say condition 512 holds, i.e, 〈x, f, y〉 ∈ (EEr ∪ IEr),

Since, (τr, ξr) ≤m (τ ′r, ξ
′
r), 〈ξ′r(x), f, ξ′r(y)〉 ∈ (EE′r ∪ IE′r) (515)

By the def. of τ ′e〈〈τ ′r〉〉, 〈ξ′r(x), f, ξ′r(y)〉 ∈ (EE′a ∪ IE′a) (516)

By the def. of apply(ξ′j , τ
′
e〈〈τ ′r〉〉),

〈ξ′j(x), f, ξ′j(y)〉 ∈ (EE′m ∪ IE′m) (517)

By Condition 509, ξ′j = ξj ◦ ξ′j (518)

Hence, ξ′j(x) = ξ′j(ξj(x)) (519)

By (511), ξ′j(x) = ξ′j(u) (520)

Similarly, ξ′j(y) = ξ′j(w) (521)

Sub. in (517), 〈ξ′j(u), f, ξ′j(w)〉 ∈ (EE′m ∪ IE′m) (522)

Say condition 513 holds, i.e, 〈p, f, q〉 ∈ IEe ∧ x ∈ η(p) ∧ y ∈ η(q). Since,
(τr, ξr) ≤m (τ ′r, ξ

′
r) and (τe, ξe) ≤m (τ ′e, ξ

′
e), by Lemma 37,

x ∈ η(p) ∧ x ∈ (IVe ∪ EVe) =⇒ ξ′e(x) ∈ η′(ξ′e(p)) (523)

x ∈ η(p) ∧ x ∈ (IVr ∪ EVr) =⇒ ξ′r(x) ∈ η′(ξ′e(p)) (524)

Since ξ′e ≤p ξ′r tp ξ′e and ξ′r ≤p ξ′r tp ξ′e

ξ′j(ξ
′
e(x)) = ξ′j(x) (525)

ξ′j(ξ
′
r(x)) = ξ′j(x) (526)

(523), (524), (525) and (526) imply that

x ∈ η(p) =⇒ ξ′j(x) ∈ ξ̂′j(η
′(ξ′e(p))) (527)

Since (τe, ξe) ≤m (τ ′e, ξ
′
e), 〈p, f, q〉 ∈ IEe implies that 〈ξ′e(p), f, ξ′e(q)〉 ∈ IE′e.

Hence, η′(ξ′e(p))× {f} × η′(ξ′e(p)) ⊆ (EE′a ∪ IE′a).

By the def. of apply and (527), 〈ξ′j(x), f, ξ′j(y)〉 ∈ (EE′m ∪ IE′m) (528)

By (517)-(522), 〈ξ′j(u), f, ξ′j(w)〉 ∈ (EE′m ∪ IE′m) (529)

Say condition 514 holds, i.e, 〈p, f, y〉 ∈ EEe∧x ∈ η(p)∧x ∈ Escaping(τe〈〈τr〉〉Sa).

Since (τe, ξe) ≤m (τ ′e, ξ
′
e), 〈p, f, y〉 ∈ EEe =⇒ 〈ξ′e(p), f, ξ′e(y)〉 ∈ EE′e (530)

By Lemma 37,

x ∈ Escaping(τe〈〈τr〉〉) ∧ x ∈ (IVe ∪ EVe) =⇒ ξ′e(x) ∈ Escaping(τ ′e〈〈τ ′r〉〉)(ξ′e(p))
x ∈ Escaping(τe〈〈τr〉〉) ∧ x ∈ (IVr ∪ EVr) =⇒ ξ′r(x) ∈ Escaping(τ ′e〈〈τ ′r〉〉)(ξ′e(p))

Which implies that,

x ∈ Escaping(τe〈〈τr〉〉) ∧ x ∈ (IVr ∪ EVr) =⇒ ξ′j(x) ∈ ξ̂′j(Escaping(τ ′e〈〈τ ′r〉〉)(ξ′e(p)))
(531)

By abstract semantics, (η′(ξ′e(p))∩Escaping(τ ′e〈〈τ ′r〉〉))×{f}×ξ′e(y) ⊆ (EE′a∪
IE′a)

By (527),(531), ξ′j(x), f, ξ′j(y) ∈ (EE′m ∪ IE′m) (532)

By (517)-(522), ξ′j(u), f, ξ′j(u) ∈ (EE′m ∪ IE′m) (533)

Say u ∈ σm(var).

By the def. of apply , ∃x ∈ σa(var) ∧ ξj(x) = u (534)

By def. of 〈〈〉〉, x ∈ σa(var) =⇒ ∃p ∈ (IVe ∪ EVe) s.t.

x ∈ η(p) ∧ p ∈ σe(var) (535)

Since (τe, ξe) ≤m (τ ′e, ξ
′
e), p ∈ σe(var) =⇒ ξ′e(p) ∈ σ′e(var) (536)

By def. of 〈〈〉〉, η′(ξ′e(p)) ⊆ σ′a(var) (537)

By (527), x ∈ η(p) =⇒ ξ′j(x) ∈ ξ̂′j(η
′(ξ′e(p))) (538)

Hence, ξ′j(x) ∈ σ′m(var) (539)

By (517)-(522), ξ′j(u) ∈ σ′m(var) (540)

9.6 Isotonicity Of Node Merging (Lemma 10)

Lemma 39. NM is isotonic w.r.t ≤m i.e, (τ, ξ) ≤m NM (τ, ξ).

Proof. Let (τn, ξn) = NM (τ, ξ). By the def. of NM , ξn = ξ tp ChooseNodesToMerge(τ).
Hence, ξ ≤p ξn. τ �ξn τn follows from the definition of apply .

A Implementation Details

We implemented the purity analysis along with the optimizations described in
the previous sections using the Microsoft Phoenix program analysis framework
[12] which provides support for implementing custom static analyses for Mi-
crosoft.NET DLLs. At a high level, given a DLL, our implementation performs
a bottom-up traversal of the call-graph iterating over the Strongly connected
components (SCCs) until a fix-point is reached. However, instead of arbitrarily
iterating over the the methods in the SCC we use an iteration strategy based
on the ideas presented in [10] which we empirically found to be effective. To
compute the side-effects of a method, we maintain a “may-write-set” along with
transformer graphs that tracks all the fields of the abstract objects that may be
mutated (i.e, written) by a method.

A.1 Language Extensions

To analyse real world C# programs we extend the analysis presented in the
previous sections to support the language extensions discussed below.

Modelling exceptions. We track all the (abstract) exception objects that
can be thrown by a method using a special variable throw. While analysing catch
blocks, we use the throw variable’s points-to set to infer the possible exception
objects that can be caught by the catch block. As a special case, we do not track
the implicit exceptions that can thrown by the runtime like NullPointerExcep-
tion, ArrayOutOfBoundException etc. as the fields of these exceptions are read
only and cannot be mutated by the library methods. As an optimization, we
merge all the abstract exception objects that can be thrown by a method into a
single abstract vertex to prevent the explosion of summary graphs.

Modelling static fields accesses. We consider a static field access (say C.f
where C is a class) as an access to the field f of a globally accessible external
vertex called global load vertex. The global load vertex is treated as an implicit
parameter to every method and is a part of the summary of every method. The
reads to the static fields will result in external edges from the global load vertex
and the writes would result in internal edges.

Handling virtual method calls. Since our analysis does not have access to
points-to information (in fact, our analysis computes the points-to information)
we use a class hierarchy analysis to find the targets of a virtual method call.
However, when the abstract objects pointed to by the receiver of a virtual method
call are all internal nodes (i.e, allocated inside the method being analysed or its

transitive callees) we use the type(s) of the internal nodes to determine the
targets of the virtual method call.

Handling method delegates. In C# it is possible to invoke methods
through method delegates which is similar to the function pointers in C. We
assume that all method delegates are pure and only return newly created ob-
ject. Our analysis is sound only when this assumption holds. We describe the
rationale behind choosing this approach (instead of a conservative approach) in
the later part of the section when we discuss unanalyzable calls.

A.2 Other implementation Issues

Supporting libraries distributed across several DLLs. In general, the
DLLs can have dependencies on other DLLs (especially, on the base C# library
which comprises of three DLLs viz. mscorlib.dll, System.dll, System.Core.dll).
Hence, it is necessary to analyse all the DLLs together as a single large program.
However, due to the limitations of the phoenix analysis framework we analyse a
single DLL at a time but store all the necessary information about the analysed
DLL, particularly the class hierarchy and the method summaries, in a database
and use the stored information while analysing other dependent DLLs. However,
this approach is sound only when the DLLs do not have cyclic dependencies.

Handling unanalyzable calls. We refer to the calls made to the native
methods and methods defined in DLLs which cannot be analysed by the phoenix
framework as unanalyzable calls. Like in the case of method delegates, we assume
that all unanalyzable method calls are pure and return newly created objects.
The summaries that we compute are sound only if this assumption holds. An
alternative approach would be to make a conservative assumption by treating all
the unanalyzable methods as mutating a static field. However we do not make
a conservative assumption as, firstly, it results in too many false positives and
secondly, the loss of precision due to the optimizations that we propose may
get masked by the spurious impurities introduced due to the unanalyzable calls.
In all the experiments that we carried out we found that, in most cases, the
unanalyzable calls were due to GUI accesses and Database accesses which are
defined in the native DLLs that cannot be analysed by our implementation.

References

1. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape anal-
ysis by means of bi-abduction. In: POPL. pp. 289–300 (2009)

2. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: POPL.
pp. 133–146 (1999)

3. Cheng, B.C., Hwu, W.M.W.: Modular interprocedural pointer analysis using access
paths: design, implementation, and evaluation. In: PLDI. pp. 57–69 (2000)

4. Codeplex. http://www.codeplex.com (March 2011)

5. Cousot, P., Cousot, R.: Abstract interpretation frameworks. J. Log. Comput. 2(4),
511–547 (1992)

6. Cousot, P., Cousot, R.: Modular static program analysis. In: CC. pp. 159–178
(2002)

7. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. In: SAS. pp. 188–204 (2009)

8. Gulavani, B.S., Henzinger, T.A., Kannan, Y., Nori, A.V., Rajamani, S.K.: SYN-
ERGY: a new algorithm for property checking. In: FSE. pp. 117–127 (2006)

9. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interpro-
cedural shape analysis. ACM Trans. Program. Lang. Syst. 32, 5:1–5:52 (February
2010), http://doi.acm.org/10.1145/1667048.1667050

10. Kanamori, A., Weise, D.: Worklist management strategies for data flow analysis.
Tech. rep., Microsoft Research (1994)

11. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: CC. pp. 125–
140 (1992)

12. Phoenix. https://connect.microsoft.com/Phoenix (March 2011)
13. Prabhu, P., Ramalingam, G., Vaswani, K.: Safe programmable speculative paral-

lelism. In: PLDI. pp. 50–61 (2010)
14. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free

programs. In: SAS. pp. 284–302 (2005)
15. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.

In: POPL. pp. 105–118 (1999)
16. Salcianu, A.D.: Pointer Analysis and its Applications for Java Programs. Master’s

thesis, Massachusetts institute of technology (2001)
17. Salcianu, A.D., Rinard, M.C.: Purity and side effect analysis for java programs. In:

In VMCAI. Springer-Verlag (2005)
18. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:

Program Flow Analysis: Theory and Applications. pp. 189–234 (1981)
19. Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java pro-

grams. In: OOPSLA. pp. 187–206 (1999)

