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Abstract
Null dereferences are a bane of programming in languages
such as Java. In this paper we propose a sound, demand-
driven, inter-procedurally context-sensitive dataflow analy-
sis technique to verify a given dereference as safe or poten-
tially unsafe. Our analysis uses an abstract lattice of formu-
las to find a pre-condition at the entry of the program such
that a null-dereference can occur only if the initial state of
the program satisfies this pre-condition. We use a simplified
domain of formulas, abstracting out integer arithmetic, as
well as unbounded access paths due to recursive data struc-
tures. For the sake of precision we model aliasing relation-
ships explicitly in our abstract lattice, enable strong updates,
and use a limited notion of path sensitivity. For the sake of
scalability we prune formulas continually as they get prop-
agated, reducing to true conjuncts that are less likely to be
useful in validating or invalidating the formula. We have im-
plemented our approach, and present an evaluation of it on
a set of ten real Java programs. Our results show that the set
of design features we have incorporated enable the analy-
sis to (a) explore long, inter-procedural paths to verify each
dereference, with (b) reasonable accuracy, and (c) very quick
response time per dereference, making it suitable for use in
desktop development environments.

Categories and Subject Descriptors D [2]: 4—Assertion
checkers; F [3]: 1—Assertions, Mechanical verification

General Terms Algorithms,Experimentation,Verification
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1: foo(a,d) {

2: b = null;

3: if (a == null)

4: b = d;

5: c = a;

6: if (c != null)

7: b.g = 10;

8: }
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Figure 1. Computation of weakest at-least once pre-
condition at line 1 for condition “b = null” at line 7

1. Introduction
We address the problem of verifying the non-nullness of
dereferences in Java programs, via over-approximated weak-
est pre-conditions analysis. Given a program point p and a
condition C, a pre-condition [5] for (p, C) is a constraint
on the initial state of the program that guarantees that the
program state will satisfy C every time control reaches the
point p; control, however, will not necessarily reach p in
every execution that begins by satisfying the pre-condition.
A weakest pre-condition wp(p, C) is the weakest such pre-
condition for (p, C). Clearly, a property C at point p always
holds iff wp(p, C) is logically equivalent to true (we as-
sume that there are no external constraints on the possible
initial states of a program). We define a notion of the weak-
est at-least once pre-condition, denoted wp1(p, C), as the
weakest constraint on the initial state of the program that
guarantees that execution will reach p at least once in a state
that satisfies C; control, however, may reach p other times
in states that do not satisfy C. Note: (a) for any (p, C),
wp1(p, C) = ¬wp(p,¬C), and (b) a property A always
holds at a program point p iff wp1(p,¬A) is logically equiv-
alent to false .

Weakest at-least-once preconditions are not computable
precisely in the presence of loops and recursion. Our ap-
proach is to use an abstract interpretation [4] to over-



approximate the weakest at-least-once pre-condition; i.e., for
variable v dereferenced at a given program point p, we use
a backwards, demand-driven dataflow analysis to compute a
condition at the entry point to the program that is equal to or
implied by wp1(p, v = null). We declare the dereference
safe if this condition is equal to false . Our data-flow lattice
is a lattice of predicates, whose literals are access paths (of
the form v.f1.f2. . .fk), and null . The lattice elements are
ordered by implication, where weaker predicates dominate
strong predicates, while our join operation is OR. We illus-
trate our analysis using a small example in Figure 1; as can
be seen, the weakest at-least-once pre-condition at line 1 for
b to be null in line 7 is “a 6= null”. In our implementation,
in order to ensure termination, and for the sake of scalabil-
ity, we ensure finite access path lengths, abstract out arith-
metic, use summary tables [18] to cache the results of inter-
procedural analysis, and use custom predicate-simplification
rules rather than a full-blown satisfiability solver. For the
sake of precision our analysis is inter-procedurally context-
sensitive, keeps track of aliasing relationships precisely, and
uses a limited form of path sensitivity.

1.1 Contributions
Our chief contributions are:

• A novel set of design features that together enable sound
demand-driven verification of dereferences in real Java
programs, with very quick response time per dereference,
and reasonable precision. Our approach would be useful
if integrated in a development environment, letting a pro-
grammer check the safety of the dereferences in their cur-
rent scope of interest (e.g., the methods in the class they
are editing) in near real time.
• An implementation of this approach.
• An evaluation of the approach on a set of real Java pro-

grams, with detailed analysis of the running time and pre-
cision. To the best of our knowledge ours is the first prac-
tical weakest pre-conditions-based verification approach
to be demonstrated on large, real Java programs.

Over-approximating weakest at-least-once preconditions
for Java is challenging for multiple reasons. Loops and re-
cursion are difficult to handle soundly and with reasonable
precision. Even for loop-free programs there is potential for
exponential explosion due to the number of distinct paths
in the program. Within straight-line code itself aliasing can
increase the number of disjunctions in the preconditions. In
addition to these issues, the computation should handle lan-
guage features like virtual method dispatch, type checks, fre-
quent accesses to heap, deeply nested chains of method calls,
and call backs (from library methods to application meth-
ods). All of these, and also the sheer scale of real Java pro-
grams can make the analysis extremely expensive or very
imprecise unless it is designed carefully. Therefore, we make
a set of design decisions for our analysis (outlined above,

and described in detail in the subsequent sections) that yield
good precision in many (but not all) scenarios, without being
impractical expense-wise.

Compared to previous related work on this topic, e.g.,
Xylem [15] and Salsa [13], our technical innovations are in
terms of how we (a) perform strong updates (for precision)
in the presence of aliasing, (b) handle recursion soundly in
the backwards, demand-driven setting, and (c) enable more
paths, and longer paths with deep call chains to be explored,
by continually simplifying the formulas being propagated.
Our formula simplification is based on dropping conjuncts
that are less likely to eventually play a role in the validation
or invalidation of the formula, and is with the intent of keep-
ing formula sizes in check, which could otherwise explode
with increasing path lengths. As a result of these innova-
tions we are able to efficiently analyze large program scopes,
thereby refuting a conjecture by previous researchers [13]
that such an analysis would be infeasible. In fact, the pri-
mary strength of our approach is being able to verify a class
of dereferences where the pointer value is not transmitted
through recursive data structures or arrays (which are ex-
pensive to model precisely, and which we deal with conser-
vatively), but are nonetheless difficult for other approaches
to reason about due to the large number of paths, and long
paths, that go from the program entry to the dereference.

Ours is a verification approach to efficiently find a su-
perset of all potential null-dereference sites; this is in con-
trast with bug-finding approaches [11, 15], that may miss
bugs (and also report false positives). Our approach comple-
ments precise, expensive, and incomplete approaches such
as Snugglebug [3] that attempt to find a concrete input to
a program that disproves a desired safety property, in that
these approaches could be used to try to validate our bug
reports.

We have evaluated our implementation on a set of ten
medium-to-large real programs. The approach turns out to
be highly efficient, taking less than 250 milli seconds per
dereference on at least 93% of the dereferences in each of
9 (out of 10) programs, and on 85% of the dereferences in
one program. The memory footprint of the analysis is very
small. It is reasonably precise, reporting fewer than 16% of
the dereferences as potentially unsafe in 7 out of the 10 pro-
grams, and between 21% and 29% of the dereferences as po-
tentially unsafe in the remaining 3 programs. We have also
identified various interesting characteristics of the derefer-
ences that were verified as safe, such as lengths and context-
depths of analyzed paths, as well characteristics of derefer-
ences that were found to be potentially unsafe.

An advantage of our approach is that it is demand driven,
in contrast to previous verification approaches that are based
on a forward analysis, such as Salsa [13]. A demand-driven
analysis means that an individual programmer working on
a portion of a large application could try to verify derefer-
ences in his or her code, by taking into account all paths in



AccessPath (AP) → Variable.Fields | Variable
Fields → field.Fields | ε
Atom → AP | null
Predicate → Atom op Atom | true | false
op → = | 6=
Disjunct ≡ 2Predicate

Formula ≡ 2Disjunct

Figure 2. Structure of formulas (lattice elements)

the program that lead to these dereferences, without paying
the price of verifying all dereferences in the program. Our
analysis is currently highly efficient for this purpose. In the
future, we will look into trading off some of this efficiency
to address more precisely certain complex features such as
arrays and recursive heap data structures.

The rest of this paper is structured as follows. We discuss
our analysis in the intra-procedural setting in Section 2, and
its extension to the inter-procedural setting in Section 3.
Section 4 contains a few details about our implementation,
while Section 5 discusses our experiments in detail. We
discuss related work in Section 6, and conclude the main
paper in Section 7. Finally, we sketch a formulation of our
analysis as an abstract interpretation in the Appendix.

2. The basic intra-procedural approach
As mentioned in the Introduction, our approach is a standard
backwards data-flow analysis. In the rest of this section we
discuss in the intra-procedural setting our abstract lattice,
transfer functions, the analysis, as well as the key features
and properties of this analysis.

2.1 Abstract lattice, and transfer functions
Our abstract lattice elements are formulas in disjunctive nor-
mal form, represented as shown in Figure 2. Note that a Dis-
junct is a conjunction of Predicates, and a Formula (i.e., a
lattice element) is a disjunction of Disjuncts. The lattice el-
ements are ordered intuitively by implication: in particular,
given two Formulas f1 and f2, f1 ≤ f2 if f1 ⊆ f2 (con-
sidering each Formula as a set of Disjuncts). Therefore, our
join operation is set union (which implements logical OR),
bottom element is the empty set of disjuncts (which repre-
sents logical falsehood), and the top element is the set of all
Disjuncts (which represents logical truth). While the lattice
as shown is of infinite size due to unbounded sequences of
fields in access paths, in the analysis we effectively make
the lattice finite by bounding the access paths (see details in
Section 2.1.1).

We assume that the program is in an Intermediate Repre-
sentation (IR) form like three-address code. We also assume
that variables have been renamed in a way that the name
of a variable fully identifies the scope it is declared in. The
(backward) transfer functions for the individual statements
in the IR are shown in Figure 3. Since the functions are all

distributive, we express each one as taking a single disjunct
in the statement’s post-state as input, and returning a set (i.e.,
disjunction) of disjuncts φ′ in the statement’s pre-state.

Our notation and terminology is as follows. For a formula
φ and variables v, w, φ[w/v] means φ in which v is replaced
syntactically with w. Vars(pred) is a set containing the (one
or two) program variables (without the field names) referred
to in pred . SubAPs(φ) is a set containing all prefixes (proper
as well as improper) of all access paths that are operands
of the predicates in φ. The symbol =s denotes syntactic
identity of two terms (as opposed to value identity). Note
that the PUTFIELD rule (in its second of three cases) is the
only one to return a φ′ containing two disjuncts. All other
rules return a φ′ containing a single disjunct; therefore, for
brevity, we omit the curly braces around φ′ in these rules.
The root dereference is the given dereference that we wish
to verify; e.g., in Figure 1 it is the dereference of b at
line 7. Every disjunct in the analysis has zero or one root
predicates, which are always of the form AP = null . At the
program point preceding the root dereference of an access
path ap the sole disjunct (i.e., the post-condition) contains a
single predicate ap = null , which is the root predicate of
this disjunct. Whenever a disjunct d with root predicate pd
gets transformed by a statement into a disjunct d′, the root
predicate in d′ is that predicate that is equal to pd or the result
of the rewriting applied to pd by the transfer function of the
statement. In our notation we underline the root predicate in
each disjunct; for instance, see Figure 1, where the disjunct
at the start of the analysis (i.e., the post-condition) is “b =
null” at the point before Line 7.

The objective of the transfer function of each statement
is to accept a post-state φ, and return a pre-state φ′ that’s
an over-approximation of the weakest at-least-once pre-
condition of φ wrt the statement. The functions for COPY,
NULLASGN, and RETURN are self-explanatory; we discuss
below some of the more interesting ones. The EXPRASGN
rule reduces all predicates in φ that depend on v to true ,
because we abstract out all arithmetic from our disjuncts.
Note that reducing a predicate to true is equivalent to re-
moving (or dropping) the predicate from the disjunct. In fact,
an empty disjunct (disjunct with no predicates) is equiva-
lent to {true}. GETARRAY does a similar reduction, while
PUTARRAY has an identity transfer function, because the in-
coming fact (i.e., Formula) can contain no array references.
NEWASGN uses an approach that is standard in many previ-
ous approaches – of representing all objects allocated at an
allocation-site i by a single variable ti (that is not present in
the original program).

2.1.1 Bounding access paths, and path sensitivity
We finitize our lattice by bounding access path lengths, as
follows. In rule GETFIELD, whenever a predicate in the
computed pre-condition φ′ contains an access path in which
some field f repeats more than once in the sequence of
fields, we drop this predicate (i.e., reduce it to true). This



Instruction Transfer Function: λφ ∈ Disjunct .φ′, where φ′ ∈ 2Disjunct , and is =
COPY v = w φ[w/v]
NULLASGN v = null φ[null/v]
NEWASGN v = new T φ[ti/v], where ti is a variable representing all objects allocated at this instruction i
GETFIELD v = r.f φ[r.f/v] ∪ {r 6= null} (See Section 2.1.1 regarding access-path bounding.)
ASSUME assume(b) φ ∪ {b}, if b =s “AP op null ′′

φ, otherwise
EXPRASGN v = v1 op v2 φ− S, where S = {pred ∈ φ | v ∈ Vars(pred)}
GETARRAY v = a[i] φ− S, where S = {pred ∈ φ | v ∈ Vars(pred)}
PUTARRAY a[i] = v φ
PUTFIELD r.f = v φ[r.f, v, ap1.f ][r.f, v, ap2.f ] . . . [r.f, v, apn.f ],

where {ap1.f, ap2.f, . . . , apn.f} are the access paths in SubAPs(φ) that end with field f , and
φ[r.f, v, api.f ]

= φ[v/api.f ] ∪ {r 6= null}, if MustAlias(r, api) after r.f = v
= {φ[v/api.f ] ∪ {r = api, r 6= null}, φ ∪ {r 6= api, r 6= null}},

if MayAlias(r, api) after r.f = v
= φ ∪ {r 6= null}, otherwise

RETURN return v φ[v/ret], where ret is a place-holder for the return value

Figure 3. Abstract transfer functions

effectively finitizes our lattice, because no access path can be
longer than the total number of distinct fields (statically) in
the program. This does render our analysis imprecise in the
presence of recursive data structures; we postpone further
discussion of this to Section 4.2.

We implement a limited notion of path-sensitivity as
follows. The ASSUME rule conjuncts the condition b in
assume(b) with φ to yield φ′ if b is an access path being
compared to null; this predicate (i.e., b) could get validated
or invalidated later during the propagation, based on other
assignments or assumes that are encountered.

2.1.2 Strong updates in the presence of aliasing
Strong updates of fields are a requirement for precision in
null-dereference analysis, but are difficult to perform in the
presence of aliasing. Even precise pre-computed may-alias
and must-alias information may not enable strong updates
often enough, because at a given program point two vari-
ables may be aliased under some paths and not aliased un-
der other paths. Since our approach is to propagate disjuncts
selectively along paths (depending on the predicates in the
disjuncts), we basically incorporate a flow- and context-
sensitive and limited path-sensitive points-to analysis within
our main analysis, and always perform strong updates at put-
field statements. Given a put-field statement r.f = v, and
for each access path api that occurs in φ, we (a) hypoth-
esize that api and r are aliases, and generate a disjunct in
φ′ in which occurrences of api.f have been replaced with
v, and also (b) hypothesize that api and r are not aliases,
and generate a disjunct in φ′ that is identical to φ. To the
first of the two disjuncts above we add an aliasing predi-
cate r = api, and to the second one we add the aliasing
predicate r 6= api. The aliasing predicate(s) in a disjunct

v = w; <x.g = null>

w.f = x; <x.g = null ∧ v = w>, <v.f.g = null ∧ v 6= w>
v.f.g.h; <v.f.g = null>

Figure 4. Illustration of our bottom-up analysis in the pres-
ence of PUTFIELD statement. Each entry on the right-hand
side shows the formula at the program point that precedes the
corresponding statement. Root predicates are underlined.

encode the aliasing hypotheses under which the disjunct is
valid, and are used by the analysis to subsequently validate
(resp. invalidate) the disjunct as it gets propagated to state-
ments that confirm (resp. contradict) the hypotheses. In con-
trast, previous approaches such as Xylem [15] and Salsa [13]
are not able to take advantage of path-sensitive aliasing rela-
tionships as deeply as we do.

Note that in the PUTFIELD rule we do make use of pre-
computed MayAlias and MustAlias information (if avail-
able). This is simply an optimization for efficiency; the pre-
cision of the pre-computed alias information does not in-
fluence the ultimate precision of our analysis (in the intra-
procedural setting). For instance, if there is no pre-computed
may-alias information available then every access path can
be assumed to be may-aliased with every other access path
(provided their static types are compatible); similarly, if
there is no pre-computed must-alias information available
(which is the case in our implementation), we can treat api
and apj to be must-aliased iff api =s apj .

We illustrate the above technique using Figure 4. The
left hand side shows a toy program, wherein we wish to
verify the dereference of the field “v.f.g”. To the right of
each statement we show the disjuncts at the point above the



statement. Propagating the disjunct “v.f.g = null” from the
final point upwards, we encounter the put-field statement,
which leads to the generation of two disjuncts. Both these
disjuncts are propagated upwards, but the second one gets
invalidated by the statement “v = w”, meaning the first one
alone reaches the top (and hence is the weakest at-least-once
pre-condition).

Given a put-field statement r.f = v, if there are k prefixes
of access paths of the form ap.f in φ such that ap may be
aliased with r, the resultant φ′ will have 2k disjuncts. While
this blowup sounds excessive on paper, it is not a problem in
practice, due to several reasons. One reason for the blow up,
in which case the blowup gets compensated for very soon
after it happens, is that many IRs, such as the one we use –
Wala [21] – always copy program variables into temporaries
before doing field accesses. Thus, the put-field statement
above becomes something like “tk = r; tk.f = v”. While
propagating a disjunct that refers to r in the backwards
direction the analysis would not know initially if tk and r
are aliased or not. Thus, it would blow up the disjunct. Then,
upon encountering tk = r it would invalidate the disjunct
that has the aliasing predicate tk 6= r.

When programmers introduce aliasing in their code, then
invalidation may not happen so quickly, and the number
as well as sizes of disjuncts could increase inordinately
when propagated through long inter-procedural paths (al-
though, due to the finitized lattice, there is no danger of non-
termination). To deal with this, we associate an age with
every predicate, which is the number of statements it has
been propagated through; we have a threshold k1 (which
we set to 1000 in our implementation), and drop (i.e., re-
duce to true) a predicate whenever its age increases beyond
k1. Additionally, we have another threshold k2 (set to 3 in
our implementation): whenever a disjunct has more than k2
predicates, excluding aliasing predicates, we drop its oldest
of its predicates. The idea behind dropping old predicates
is our observation that branch correlations in paths typically
occur between branches that are near each other in the code,
than very far from each other. The root predicate alone is
never dropped using these heuristics. Note that these heuris-
tics are conservative; in fact, dropping any predicate at any
point only results in a weaker pre-condition than the ideal
one.

Xylem also bounds disjunct sizes, but in a more coarse-
grained manner. They drop an entire disjunct when its size
crosses a threshold. We, on the other hand, drop individual
predicates from disjuncts, and that too “old” ones, which
are least likely to get validated or invalidated going forward.
We found that our approach serves the purpose of improving
efficiency, but with greater precision.

2.2 Simplification rules
Inspired by the Snugglebug [3] approach, we apply a light-
weight custom simplifier on each disjunct after it is produced
by a propagation step, to validate, invalidate, or simplify the

(1) (ap = ap) −→ true
(2) {ap1 = ap2, ap1 6= ap2} −→ {false}
(3) {ap1 = null , ap1 6= null} −→ {false}
(4) (ti = tj) −→ false
(5) (ti 6= tj) −→ true
(6) (ti = null) −→ false
(7) (ti 6= null) −→ true
(8) (ti = ap) −→ false
(9) (ti 6= ap) −→ true

Figure 5. Rules for simplifying disjuncts

disjunct. Figure 5 shows a sampling of the rules used in our
simplifier. In Figure 5, api’s represent access paths, and each
ti represents the special variable introduced corresponding
to the allocation-site i by the analysis to represent all con-
crete objects allocated at this site (see the NEWASGN rule
in Figure 3). Rules 1-3 are straightforward. Rules 4 and 5
are based on the fact that the sets of objects allocated at two
different sites are disjoint. Rules 6 and 7 are based on the
fact that a newly allocated object cannot be null (we do not
model the potential failure of memory allocation). Rules 8
and 9 are based on the fact that a newly allocated object is
not the same as any other existing object.

Note that for any statement st, its abstract transfer func-
tion fst actually is the function shown in Figure 3, composed
with repeated applications of the simplification rules until a
fix-point is reached.

2.3 Putting it all together
Let ap be a given root dereference, i.e., a given access path
that is dereferenced at a program point p that we wish to
verify. We start the dataflow analysis with the fact (i.e.,
formula) at program point p set to C ≡ ap = null , and
facts at all other program points set to the empty set. When
the analysis terminates, we read off the fact at the program
entry as an over-approximation of wp1(p, C). If this over-
approximation is the empty set (i.e., logical falsehood) then
the root dereference is safe.

Since the transfer functions are distributive, we mark and
propagate individual disjuncts, not formulas (sets of dis-
juncts), using Kildall’s [12] algorithm. This greatly reduces
the time to reach a fix point. We have also implemented a few
optimizations to the propagation: (a) Whenever any disjunct
anywhere gets simplified to the empty set (i.e., logical truth)
we terminate the analysis right away and call the root deref-
erence unsafe, without waiting for a fix point to be reached,
and (b) whenever a disjunct gets simplified to {false} we
unmark it, and do not propagate it any more. It would be
possible to take a slice of the program starting from the root
dereference, and do our analysis only on the slice. The result
would be the same as performing the analysis on the whole
program. However, we do not do this, because we found that



the time spent on computing the slice was not compensated
by the time saved during the subsequent analysis.

Since we don’t model array references in our abstract
lattice, we don’t analyze root dereferences that have array
references in them (we call them unsafe by default). As
with previous techniques [13, 15], our technique does not
model concurrency soundly, nor dynamic features such as
reflection and dynamic class loading. Our approach may
miss null-dereference errors that manifest themselves due to
these aspects.

See the right-side of Figure 1 for an illustration of our
approach. The root dereference is b.g; hence we start the
analysis with the singleton disjunct b = null at the point
above this dereference, and the empty set all other points.
The disjuncts at each program point after the propagation
is over are shown in the figure (we omit false disjuncts at
the program points before Lines 1 and 2). Note the path
sensitivity in this analysis: the disjunct d = null ∧ a 6= null
at the true branch of the first conditional (in line 3) becomes
false (and is not shown) after it propagates up through the
conditional. The end result is that the dereference in line 7
may be unsafe if a 6= null at the entrance to the program;
in this example, this turns out to be the precise weakest at-
least-once pre-condition, and not an over-approximation.

3. Inter-procedural analysis
Our inter-procedural analysis algorithm is based on the

one used in Xylem. Their analysis, in turn, is based on Sharir
and Pnueli’s tabulation based approach to inter-procedural
analysis [18], with an important modification: when a call-
site is encountered, the analysis proceeds to analyze the
callee (together with all its transitive callees) to completion
before proceeding with the analysis of the caller. In other
words, a depth-first propagation strategy is followed, rather
than a chaotic strategy or a breadth-first strategy (we dis-
cuss later the advantages offered by this strategy). Xylem’s
algorithm is sound and fully context-sensitive in the absence
of recursion, but is unsound in the presence of recursion (it
skips recursive calls). We first discuss our basic approach
(ignoring recursion) below, and then discuss in Section 3.1
how we handle recursion by iterating for a fix-point.

Figure 6 shows our inter-procedural analysis procedure.
The arguments to this procedure are a method m, a state-
ment stmt in m, and a post-condition φstmt. Let p be the
program point after statement stmt. The return value from
this procedure is a set of disjuncts, which represents an over-
approximation of wp1(p, φstmt) at the entry of method m.

The procedure shown in Figure 6 uses two globally
scoped data structures viz. a stack CS and a summary ta-
ble Σ. The stack CS , as well as lines 8–9, 15–16, and 36–40
in the figure are about handling recursion, and are discussed
in Section 3.1. We maintain for each method m a summary
table Σ[[m]] : Disjunct 7→ P(Disjunct), which is a par-
tial map from a disjunct at the exit of m to the set of dis-

1: Procedure wpWrtMethod(m, stmt , φstmt)
2: worklist W = {(stmt , φstmt)}
3: result = ∅ {A set of disjuncts}
4: if stmt = exit(m) then
5: if Σ[[m]](φstmt) is not defined then
6: update Σ[[m]][φstmt 7→ emptyset]
7: end if
8: push(CS ,(m,φstmt))
9: Γm = Σ {Γm is a snapshot of summary table Σ at the

entry of m}
10: end if
11: while W 6= ∅ do
12: Select (S, φ) ∈W {φ is a post-cond. after stmt S}
13: output = ∅ {A set of disjuncts}
14: if S is a call instruction vr = c(v1, v2, . . . , vn) then
15: if (c, φ) ∈ CS then
16: output = Σ[[c]](φ)
17: else
18: if Σ[[c]](φ) is defined then
19: output = Σ[[c]](φ) {Summary hit}
20: else {Summary miss}
21: output = wpWrtMethod(c, exit(c), φ)
22: end if
23: end if
24: else if S is Entry then
25: Add φ to result
26: else
27: output = fS(φ)
28: end if
29: for all Predecessor Statement SP of S do
30: for all φ′ ∈ output do
31: W = W ∪ {(SP , φ

′)}
32: end for
33: end for
34: end while
35: if stmt = exit(m) then
36: pop(CS )
37: if (Σ[[m]](φstmt) 6= result) then
38: Σ = Γm {replace the summary table by the saved

snapshot}
39: update Σ[[m]][φstmt 7→ result ]
40: result = wpWrtMethod(m, stmt , φstmt)
41: else
42: update Σ[[m]][φstmt 7→ result ]
43: end if
44: end if
45: return result

Figure 6. Computing wp1(stmt , φstmt) at the entry of
method m for post-cond. φstmt at point after stmt in m.

juncts that would result at the entry of m after propagating
the disjunct through the method (and its transitive callees).
The algorithm uses a worklist W to propagate a disjunct



1: Procedure wpWrtPgm(m, stmt , φstmt)
2: propagated = propagated ∪ (stmt , φstmt)
3: result = wpWrtMethod(m, stmt , φstmt)
4: precond = ∅
5: if ∃ a predecessor for m then
6: for all disjunct d′ in result do
7: for all callsite s′ of m in predecessor p of m do
8: if (s′, d′) 6∈ propagated then
9: precond = precond ∪ wpWrtPgm(p, s′′, d′),

10: where s′′ is the statement that precedes s′

11: end if
12: end for
13: end for
14: else
15: precond = result
16: end if
17: return precond

18: Procedure analyzeDeref (m, stmt , ap)
19: set CS , propagated to empty
20: set all entries in Σ to undefined
21: result = wpWrtPgm(m, stmt , ap = null)
22: if result is the empty set then
23: return “safe”
24: else
25: return “potentially unsafe”
26: end if
Figure 7. wpWrtPgm: Computing wp1(stmt , φstmt) at
the entry of the program for post-condition φstmt just
after statement stmt in m. analyzeDeref : Computing
wp1(stmt , ap = null) at the entry of the program, where
ap is an access path in stmt .

intra-procedurally through the statements in the method to
the entry of the method. Each element in the worklist is a pair
(S, φ), where φ is post-condition at the the program point af-
ter the statement S.

The lines 2–7 in Figure 6 performs the initialization of the
worklist, summary table and a variable result that is used to
store the precondition computed at the entry of the method.
As shown in lines 11–34, the algorithm iteratively processes
the elements in the worklist. For each element (S, φ) in the
worklist, where S is a statement and φ is a post-condition
after S, the algorithm computes the pre-condition (as a set
of disjuncts) at the point before the statement S and stores
it in a variable output (lines 13–28). For every statement S
other than a call statement and a method entry statement,
the intra-procedural transfer function fS as defined in Sec-
tion 2.2 is used to compute the pre-condition before the
statement S (line 27). If S is a call statement of the form
vr = c(v1, . . . , vn), the procedure wpWrtMethod is recur-
sively invoked (at line 21) to process the callee c with the
post-condition φ only if there is no result in the summary ta-

ble for (c, φ) (this check is done in line 18). Note that when
we analyze a callee (in line 21) we need to map (i.e., replace)
the occurrences of the actual parameters (at the call-site) in
the access paths in φ with the corresponding formal param-
eters, and similarly unmap the access paths in the condition
that was returned from the callee analysis (i.e., in output).
This mapping and unmapping is straightforward, so we omit
the details. The pre-condition output computed before the
statement S is the post-condition for each predecessor SP of
S. Hence, for each disjunct φ′ ∈ output (SP , φ

′) is added
to the worklist W so that it would be processed in the subse-
quent iterations (this is done in lines 29–33). Finally, once
the pre-condition result is computed at the entry of the
method, the summary table Σ is updated to map the input
post-condition φstmt to the precondition result (at line 42)
provided the input post-condition was for the exit statement
of the method m (this check is done at line 35).

Procedure wpWrtPgm in Figure 7 has the same signature
as procedure wpWrtMethod, but computes the weakest at-
least-once pre-condition of φstmt (at the point after stmt
in method m) at the entry of the entire program, rather
than at the entry of m. It does so by first computing the
pre-condition at the entry of m (see call to wpWrtMethod
in line 3), and then propagating the disjuncts in this pre-
condition through all predecessors (i.e., transitive callers) of
m until the disjuncts reach the entry of the program (see tail-
recursive call in wpWrtPgm to itself in line 9). The variable
propagated is a global variable, and is used to remember
the facts that were propagated up to the various call-sites,
in order to ensure termination. Procedure analyzeDeref is
the main routine to analyze the safety of the dereference of a
given access path ap at a point after statement stmt of method
m. It is basically a wrapper around procedure wpWrtPgm.

The depth-first approach described above (which was fol-
lowed in Xylem, too) has the advantage that if a disjunct be-
comes validated, i.e., becomes true at some point or reaches
the program’s entry while being satisfiable, then we termi-
nate the analysis (and call the root dereference unsafe). If we
adopted a chaotic or breadth-first approach it would poten-
tially take much more analysis time before any single dis-
junct is propagated deep enough to become validated. An-
other key advantage of our method is that it is space efficient.
We construct a control-flow graph of a method only on de-
mand, i.e., when we encounter a call to the method. Also,
once we have analyzed this method (which is a callee), the
memory allocated to it for storing the data-flow facts (or dis-
juncts) at every program point, the intra-procedural worklist,
etc., can be freed up. (However, as in the tabulation based
approach, we re-analyze a method when it is re-encountered
with a different data-flow fact at the exit.) Similarly, in pro-
cedure wpWrtPgm, we can de-allocate memory used for an-
alyzing any method m before we go onto analyzing its pre-
decessors.



Σ[[f]](b = null) =
false b = null “b = null ∨ “b = null ∨

a = null” a = null”
1: f(b,a) {
2: if (*) { b = null “b = null ∨ “b = null ∨

a = null” a = null”
3: b = a; false a = null a = null
4: f(b,a); false b = null “b = null ∨

a = null”
5: } b = null b = null b = null
6: } b = null b = null b = null

Iteration: 1 2 3

Figure 8. Bottom-up analysis of recursive method f with
post-condition b = null , done repeatedly until fix-point.
Each iteration i uses summary table computed in previous
iteration (see top row in iteration i − 1) to analyze call at
line 4. Each entry shows formula at the program point that
precedes the corresponding statement.

3.1 Handling recursion by iterating for a fix-point
We identify recursive calls during the analysis using a
context-stack CS , whose entries are pairs of the form (c, φ);
the presence of such an entry in the stack means that an
analysis of method c with post-condition φ (at the method’s
exit) is ongoing and not yet completed. Given this, if we
encounter another call to c with the same post-condition
φ, as checked for in line 15 in Figure 6, we have detected
recursion; we then pick the (potentially intermediate non-
fix-point) result Σ[[c]][φ] from the summary table (instead
of starting a re-analysis of c), complete the analysis of the
caller (i.e., method m, with post-state φstmt). Eventually,
we complete the analysis of the recursive method c using
the intermediate non-fix-point result of c. At this point we
restart the analysis of c with the same post-condition (see
line 40). However, during the reanalysis we discard the in-
termediate non-fix-point summary entries created during the
previous analysis. For this purpose, we use a temporary place
holder variable Γm. Each time we analyse a method c, we
store a snapshot of the summary table at the entry of c in
Γm (line 9) and during the reanalysis, we replace the sum-
mary table by the cached snapshot thereby invalidating all
the non-fix-point summary entries created during the previ-
ous iteration (see line 38). In essence, if during the analy-
sis of a method m with post-condition φstmt we detect a
recursive call, we iteratively analyze m with the same post-
condition until Σ[[m]](φstmt) reaches a fix-point. During ev-
ery iteration i ≥ 1, we use Σ[[m]](φstmt) computed in the
iteration i − 1, which we denote here as Σ[[m]]i−1(φstmt),
to compute Σ[[m]]i(φstmt) (Σ[[m]]0(φstmt) being false). We
repeat this process until Σ[[m]]i−1(φstmt) = Σ[[m]]i(φstmt)
for some i ≥ 1.

We illustrate the analysis of the recursive method f in Fig-
ure 8 with post-condition b = null at the exit of the method.

In each iteration of the analysis, to the right of each state-
ment of code, we show the formula computed at the point
just above the statement. Consider Iteration 1, where we
propagate b = null upwards from the exit. When we en-
counter the recursive call in line 4, we pick up the value of
Σ[[f]](b = null) from the initial summary table, which is
false (see the top of the figure, above the program). There-
fore, the disjunct that reaches the top of the method is false,
via the true branch of the “if”, and b = null (the post-
condition at the end of the method), via the false branch.
The disjunction of these two facts is b = null . Therefore,
we update Σ[[f]](b = null) to b = null (as shown at the
top of the figure along Iteration 1), and start Iteration 2 from
the bottom. This time, at line 4, since the post-state is the
same (b = null ), we pick up the value b = null from
Σ[[f]](b = null) (as updated in the previous iteration). This
gets transformed to a = null after propagation through “b
= a;”. Therefore, the fact at the beginning of the method be-
comes b = null ∨ a = null , where b = null came, as
explained before, via the false branch. This fact is updated
into the summary table (as shown at the top of the figure,
along Iteration 2), and is looked up and used at line 4 in It-
eration 3. When this fact flows through “b = a” it becomes
a = null ∨ a = null , which simplifies to a = null . There-
fore, a fix point is reached. The finally computed weakest
at-once pre-condition at the beginning of method f for the
post-condition b = null is b = null ∨ a = null , which, in
this case, turns out be the precise solution.

3.2 Optimizations
Using a precomputed side-effects analysis. During the
analysis of a method m if we encounter a method call c
with a disjunct φ as the post-state, we propagate the dis-
junct φ to the entry of c (if the summary for φ is not
available). However, if the information about the set of all
access-paths in φ that may be modified by c (after map-
ping) is available then we can partition the disjunct φ into
φ1 ∧ φ2 such that none of the access-paths in φ2 (or their
aliases) are modified by c. By the frame rule of the separation
logic [16], wp1(m,φ) = wp1(m,φ1) ∧ φ2. Hence, an over-
approximation of wp1(m,φ) could be computed by over-
approximating wp1(m,φ1) and conjuncting each resulting
disjunct it with φ2. We consider all the access-paths that uses
the return value of c as modified by c. This approach has two
advantages, (a) it reduces the amount of work that has to be
done inside the method m (and all its transitive callees) (b)
it increases the summary hits.

In our implementation, we used an inexpensive ModRef
(or side-effect) analysis that was available in our program
analysis framework, Wala.

Increasing summary hits by reusing summaries for weaker
disjuncts. In cases where we do not have a mapping
for a disjunct φ1 in the summary table, but have a map-
ping for a disjunct φ2 such that φ1 ⊇ φ2 (i.e., φ1 im-



plies φ2), instead of analyzing the method m with φ1
as post-condition we simply pick up and use Σ[[m]](φ2).
Since wp1(m,φ1) ⇒ wp1(m,φ2)), if φ1 implies φ2 then
any over-approximation of wp1(m,φ2) is a correct over-
approximation of wp1(m,φ1). However, in order to mini-
mize the loss of precision that this may entail, we use this
heuristic only if the root predicate in φ1 is the same as the
root predicate in φ2. We found this approach pragmatically
effective.

4. Implementation details
4.1 Analysis framework
We have implemented our approach using the Wala [21]
program analysis framework. Wala provides us control-
flow graphs of methods on demand, as well as points-to
(i.e., may-alias) information (which it pre-computes). From
among the various points-to analysis methods Wala offers,
we selected a flow-insensitive, partially context-sensitive
method (namely, ReceiverTypeContextSelector). Our
approach uses Wala’s points-to analysis results for three
purposes: (a) to construct a call-graph (particularly, to re-
solve virtual method calls), (b) to compute Mod-Ref sets
(i.e., side-effect information) for methods, (c) in the PUT-
FIELD rule, to reduce the number of aliasing combinations
that have to be considered (see Figure 3). Imprecision in
Wala’s points-to analysis affects the precision of our ap-
proach due to points (a) and (b) above, and affects the scal-
ability of our approach due to all three points above. Note
that point (c) does not affect our precision, due to our precise
modeling of aliasing relations (see Section 2.1.2). Therefore,
our approach would significantly benefit from a more pre-
cise points-to analysis. However, due to scalability limita-
tions of Wala’s points-to analysis implementations, we chose
a points-to analysis method that is reasonably precise but
highly scalable.

4.2 Balancing scalability and precision
There are several idioms in real-world Java programs that
pose severe challenges to any technique that wishes to per-
form verification scalably and precisely. We explore some of
these idioms, and discuss the engineering decisions we have
taken wrt giving up precision in certain situations wherein
a precise analysis would have turned out to be impractically
expensive.

Issue 1: Call-backs from the library. In Java, several
methods like equals, hashCode, toString defined in the ap-
plication classes are invoked by library methods; such calls
are generally referred to as call backs. For e.g., Hash-
Set::Contains invokes the equals method on the elements
of a hash set, which could be objects of application classes.
Given a root dereference inside a called-back method, such
as equals, it is often very expensive to propagate the dis-
juncts that reach the entry of this method back through all its
caller chains (via library code) to the entry of the program, as

there may be numerous (transitive) call sites for this meth-
ods inside the library and in the application. In fact, going
through all paths back from called-back methods would re-
sult in many spurious paths; e.g., a path back from method
A::Equals through HashSet::Contains can only reach points
in the application where HashSet::Contains is being called
on a hash-set that contains objects of type A. Rather than an-
alyze all these paths, which increases running time without
giving much precision gain, we have chosen to always drop
(i.e., reduce to true) a disjunct that needs to be propagated
back from the entry of a called-back method to a call-site to
the same method that is inside a library method1. By “called-
back method”, we mean a method that is not on the context
stack when the analysis leaves the method, which implies
that the root dereference is contained in the method or in
one of its transitive callees.

Issue 2: Unbounded access paths, and arrays. In the pres-
ence of recursive data-structures the length of an access path
(used in a predicate) can become unbounded, leading to non-
termination. In our analysis, we ensure that the fields in an
access path do not repeat (see Section 2.1.1). Whenever an
access-path in a predicate violates this property, we drop the
predicate (i.e., reduce it to true). A commonly mentioned
alternative is to forcibly bound the lengths of access paths
using k-limiting [13, 14]. The problem with this approach
is that two syntactically identical k-limited access-paths ap1
and ap2 (at a programs point) need not necessarily point to
the same runtime object, and hence are not must-aliased.
Therefore, strong updates become difficult to perform, im-
pacting precision. For an illustration of this, consider a put-
field statement ap1.f = v, such that the post-condition φ af-
ter this statement involves ap2.f . Even though ap1 =s ap2,
we cannot simply replace ap2.f in the φ with v. Rather,
we would need to blow up φ, and produce two disjuncts,
φ[v/ap2.f ]∧ap1 = ap2, and φ∧ap1 6= ap2. The problem is
that since ap1 and ap2 are k-limited, neither ap1 = ap2 nor
ap1 6= ap2 will be invalidated during further propagation.
This means there is no chance of φ getting invalidated, im-
plying imprecision. Inferring must-alias relationships in the
presence of recursively defined data structures needs sophis-
ticated shape analysis [17], which in its current state of evo-
lution is unlikely to scale to programs of sizes that we are in-
terested in. Hence our decision to drop predicates involving
access paths with repeated fields. Note that an advantage of
our approach over k-limiting is that we do allow access path
lengths to grow without any apriori constant length bound,
as long as fields do not repeat. Therefore, for low values of
k, our approach is likely to be actually more precise than
k-limiting.

Similar to predicates with unbounded access-paths, we
also drop predicates containing array accesses. Since array
elements are implicitly initialized to null on creation, un-

1 with one exception – when the library method is Thread.start



less strong updates are performed on array elements, a pred-
icate of the form 〈arrayap = null〉, where arrayap con-
tains an array access, will eventually become true . There
do exist techniques, e.g., that of Dillig et al [7], which pre-
cisely model integer arithmetic, and perform strong updates
on array operations. However, it is not clear how such tech-
niques can be adapted in a demand-driven setting like ours
for analysing real world Java programs.

Issue 3: Too many “AP op null” predicates in disjuncts
Note that the ASSUME, GETFIELD, and PUTFIELD rules
conjunct predicates of the form “AP op null” to disjuncts,
where op is “=” or “ 6=”. Along long paths the average num-
ber of these predicates per disjunct increases a lot, without
contributing proportionally to improved precision. Our ob-
servation was that among the numerous conditional state-
ments that are typically encountered along a path that a dis-
junct propagates through, the ones that refer to the same
object as the object referred to by the root predicate of the
disjunct are the ones that usually correlate with whether the
disjunct gets validated or invalidated. Therefore, we limit the
addition of “AP op null” predicates to the following situa-
tions: In a statement “ASSUME b” we conjunct b to the dis-
junct φ′ only if the access path in b is may-aliased with the
access path in the root predicate in φ at the point after the
assume statement. In GETFIELD and PUTFIELD statements
we conjunct r 6= null into φ′ only if r is may-aliased with
the access path in the root predicate in φ at the point after
the statement, where r is the variable being dereferenced in
the statement.

Issue 4: Virtual method calls. As mentioned earlier,
when encountering a virtual method call we query Wala’s
moderate-precision points-to analysis to find its possible tar-
gets. In the programs that we analyzed there do exist virtual
method call sites with tens or hundreds of targets, analysing
all of which is practically infeasible. Hence, when we en-
counter a virtual call having more targets than a predefined
bound (which is 10, in our implementation), we do not an-
alyze any of the targets. Instead, we drop all predicates that
make use of the return value from the method, and also all
predicates that contain access paths that are aliased with any
of the access paths mutated by any of the targets of the call
(as indicated by Wala’s Mod-Ref information), and continue
the analysis above the call. Using a more precise points-to
analysis would mitigate the problem with virtual calls, but it
would not scale well. The idea of directed call-graph con-
struction [3] would also yield benefit in this situation, but its
scalability in our context is not yet clear.

Issue 5: Missing call targets. It is possible that our analy-
sis encounters virtual method calls that do not have any tar-
gets. This may happen if the target of a method call is de-
fined in a class that is not available to the analysis. In most
cases, these method calls are calls to the GUI and JDBC li-
braries, which we do not link, as it affects the scalability of

Wala’s points-to analysis. We treat such method calls con-
servatively. Predicates that use the return value of method
calls that do not have a target are dropped. We also over-
approximate the side-effects of such a method call by as-
suming that it may modify every object reachable from the
arguments passed to it. We use this over-approximate side-
effects information to drop predicates that may be modified
by the method call.

Issue 6: Library calls. In our experiments, we found that
analyzing every library method call adversely affects the
scalability. Hence, we analyze a library method only if the
value returned by the library method is used in an access-
path. This is the case wherein we feel the effort of the
analysis is balanced by significant improvement in precision.
If a library method mutates (writes to) an access-path (or
its alias) used in a predicate in the post-state (as per Wala’s
Mod-Ref analysis), we drop the predicate.

This said, we add two features to our approach to add
back some of the precision that was given up by the above-
mentioned heuristic. We manually created a list (which we
refer to as the skip-list) of library methods that have no ex-
ternally visible side effect as per their documentation, but
that are nonetheless declared by Wala’s imprecise Mod-Ref
analysis as potentially having side effects; during the anal-
ysis, for methods in this list, we treat their Mod-Ref sets
as empty. Conversely, we found that there are several li-
brary methods that are called primarily for their side-effects,
as opposed to their return values. We therefore created an
analyze-list containing such methods, and always propagate
to them predicates that might be affected by them (as per the
Mod-Ref information). We use these two lists (which are dis-
joint) not only with direct calls to library methods, but also
when library methods are potential targets of virtual calls.
Currently our skip-list and analyze-list contain 136 and 84
library methods, respectively. It is noteworthy that manually
creating these lists, although time consuming, is worthwhile
because the lists can be reused during analysis of any pro-
gram. To give maximum benefit, however, it is likely that a
lot more methods could be added to both these lists.

5. Experimental Results
Figure 9 shows the programs used in our empirical study.
Several of these programs are commonly used to evaluate
the efficiency of the program analysis tools for Java. In
fact, 8 out of the 10 benchmarks used in the study were
picked from the Salsa paper [13], which also proposes a
null-dereference verification technique for Java programs. In
Wala, to construct a call-graph for a program, one or more
entry methods for the program (called entry-points) have
to be specified. All the benchmarks reported had at least
one main method which was used by our implementation as
an entry-point for constructing the call-graph. For programs
that had more than one main method we included all of them.
However, we ignored the main methods in the test-suites that



Benchmark Description
jlex 1.2.6 Lexical analyzer generator
javacup 0.1 Parser generator
ourtunes 1.3.3 ITunes browser
jbidwatcher Online Auctioning system

2.1.2
bcel 5.2 Libraries for bytecode manipulation
antlr 3.3 Compiler & translator generator
sablecc 4.2 OO Frameworks generator
proguard 4.5 Code optimizer & obfuscator
freecol 0.9.5 multi-player game
l2j 3.7 Multi-player game server

Figure 9. Benchmarks used in the study

are distributed along with these benchmarks. We analyzed
the entire portion of each program that is reachable from
the entry points, including library methods called from these
portions (see the discussion in Section 4.2). We carried out
all our experiments using Open JDK 1.6 libraries, on a server
machine having 2.27 GHz, 8 core Intel Xeon processor,
16 GB RAM, running CentOS linux operating system. Our
implementation is single threaded.

Figure 10 gives the overview of our experiments. We
run our backward analysis separately on each dereference
in the portion of the application that was analyzed (exclud-
ing dereferences inside library methods). The second and
third columns, show the total number of bytecodes in li-
brary methods and application methods, respectively, that
were ever entered during the analysis of any dereference.
The preprocessing time is the time taken by Wala’s points-
to analysis, call-graph construction and Mod-Ref analysis
phases, which we perform once before we analyze any of
the dereferences. The analysis time reported is the total time
taken for analysing all the dereferences in the program. The
next two columns show the total number of dereferences
that were analyzed, and the number among them that were
found potentially unsafe. The last column is the percentage
of dereferences that were found safe. It is to be noted that
other than the skip list and analyze list (for standard Java li-
brary methods) that we create manually, there are no other
manual inputs to our tool. For the benchmarks used in the
study the peak memory utilized by the analysis was in the
range 371MB (for jlex) to 1967 MB (for antlr).

The results show that on an average the tool classifies
about 84% of the dereferences as safe and the remaining
16% of dereferences as unsafe. For seven out of ten pro-
grams, less than 16% of the dereferences were reported un-
safe, while for the remaining three programs (viz. javacup,
freecol, antlr) between 20-30% of the dereferences were de-
clared unsafe.

In order to put our numbers in context, we did a quick
search on the bugzillas of the 10 programs we analyzed;
this revealed a total of 412 null dereference reports for the

program l2j, and a total of 67 reports for the other programs.
These numbers indicate that our approach probably has a
high false positive rate (as do previous approaches). It is
possible, however, to mitigate the problem of false positives
by filtering and prioritizing bug reports in various ways,
e.g., as in Xylem [15] and FindBugs. Also, as discussed
in detail later, we propose that a dereference be marked as
high priority if there is a static, inter-procedurally valid path
that connects a null assignment statement to dereference. In
fact, we find that fewer than 20% of our bug reports fall in
this category. Our search of the bugzillas yields a separate
observation, that null-dereference errors are a real problem
commonly encountered during program usage, and worthy
of the consideration of researchers in verification.

5.1 Categorization of error reports
To understand the reasons for large number of error reports
on some benchmarks, we categorized the unsafe derefer-
ences based on the reasons for the root predicate becoming
true during the analysis (see Section 2.1 for the definition
of root predicate). Figure 11 shows the 6 categories used in
the classification. A single dereference can go into multiple
categories as several disjuncts may be introduced at various
program points during the analysis of a dereference, with
each of them becoming true for a different reason. The cate-
gories cover the most important reasons for imprecision but
not every possible reason. In other words, some dereferences
may not fall into any of the categories. For these reasons, the
sum of the percentages across any row may be less than or
more than 100%.

We first focus on the category unbounded access-paths
shown in Figure 11. An unsafe dereference falls in this
category if during its analysis some disjunct happened to
contain a root predicate that was dropped because it had
an access path with a repeating field or a reference to an
element of an array. The figure shows that on an average
40% (max. 76% and min. 11%) of dereferences reported as
unsafe by our analysis fall under this category, implying that
recursive data structures and array accesses are ubiquitous
in Java programs. However, handling these in a precise and
scalable way is quite difficult.

The Null-assignment category includes all the derefer-
ences, in whose analysis, a disjunct containing a root pred-
icate was propagated through a null assignment statement
that replaced the access-path in the root predicate by null.
For instance, say during the analysis of dereference r at a
program point p, a disjunct<v.f = null> is propagated thor-
ough the statement S : v.f = null. In this case, v.f would
be replaced by a null in the resulting formulae and hence
the dereference of r at p would be included in the null-
assignment category. For the dereferences that fall under this
category (which is around 19%) there exist at least one static
path along which a null value flows to the root dereference.
Hence, they are more likely to be true positives (they could
still include false-positives because of infeasible paths not



Benchmarks Lib. App. Preprocessing analysis # of derefs Unsafe derefs % deref
bytecode bytecode time (s) time (s) (excluding verified

derefs of this)
jlex 408 25056 6 9 2510 93 96.3%
javacup 509 29180 7 14 2851 607 78.7%
bcel 3596 86483 11 47 10143 1184 88.3%
jbidwatcher 16505 105043 17 530 9643 1490 84.5%
sablecc 4055 157169 20 189 14017 2116 84.9%
ourtunes 7206 127167 12 160 16449 1495 90.9%
proguard 2766 185594 19 149 17736 2778 84.3%
antlr 7224 251010 18 43892 17409 4042 76.8%
freecol 8889 260785 32 5815 24077 6994 71%
l2j 14310 373661 23 384 36899 5727 84.5%

Avg = 84.02%

Figure 10. Results of analysing the benchmarks shown in Figure 9

Benchmarks call-backs missing-targets virtual-calls library calls unbounded-aps null-assignment
jlex 10% 1% 0% 0% 50% 27%
javacup 3% 0% 0% 0% 76% 2%
bcel 9% 1% 17% 0% 56% 25%
jbidwatcher 36% 19% 27% 1% 17% 21%
sablecc 6% 5% 6% 12% 22% 14%
ourtunes 3% 1% 0% 5% 68% 8%
proguard 7% 0% 38% 0% 57% 36%
antlr 9% 14% 51% 52% 20% 23%
freecol 4% 16% 20% 44% 13% 17%
l2j 17% 36% 0% 3% 11% 21%
Average 10.4% 9.3% 15.9% 11.7% 40% 19.4%

Figure 11. Percentage of unsafe dereferences in the various categories

caught by our limited path-sensitivity). It is an encourag-
ing sign that this percentage is high (second highest among
the categories) as it implies that for 19% of unsafe deref-
erences the analysis is able find one static inter-procedurally
valid path (which is also to some extent path-sensitive) along
which a null value flows to the point of dereference.

We now consider the categories virtual calls and miss-
ing targets that arise mainly due to the imprecision in the
call-graph. A dereference falls into the virtual calls category
if during its analysis some disjunct containing a root predi-
cate had to be propagated though a virtual method call with
more than 10 targets, at least one of which modifies the ac-
cess path in the root predicate. Similarly, a dereference falls
into the missing targets category if during its analysis some
disjunct containing the root predicate had to be propagated
though a method call with no targets (which are mostly calls
to GUI libraries and JDBC libraries). In these situations we
stop the analysis of the current dereference and call it unsafe
(see Section 4.2). Figure 11 show that, on an average, a sig-
nificant percentage of unsafe dereferences, namely around

16% and 9%, fall under the two categories, respectively. It is
to be noted that in programs freecol and antlr for which our
analysis generates many error reports, the number of deref-
erences that fall under one of the two categories is quite high
(around 52% in antlr and 20% in freecol) implying that the
large number of error reports are more likely the result of an
imprecise call-graph.

We now discuss the categories call-backs and library
calls that arise due to the complex interactions between the
application and the library code, as explained in Section 4.2.
A dereference falls into one of these categories, respectively,
if during its analysis some disjunct containing the root pred-
icate (a) reached the entry of a method that is called-back
by a library method or (b) had to be propagated though a li-
brary method that has a side-effect on the access-path used
in the root predicate. Figure 11 indicates that a significant
number of error reports fall into these two categories in all
benchmarks (particularly, in antlr, freecol and jbidwatcher).
Later, in Section 5.4.2, we present an empirical evaluation



Figure 12. A point (x,y) in the graph indicates that in y
percentage of dereferences the average disjunct size was ≤
x

of the impact of analysing all library methods and call-backs
on the scalability the analysis.

5.2 Evaluation of the scalability of the analysis
We now present some metrics that highlights the scalability
of our analysis. The most important measure of the scalabil-
ity of a demand-driven analysis is the response time, which
is the time taken by the analysis to report a dereference as
safe or unsafe. The analysis is very efficient on the 8 pro-
grams other than antlr and freecol. In each of these 8 pro-
grams approximately 98% of dereferences take up to 250 ms
each, while the rest take up to 14 seconds each. In the case of
freecol, around 93% of dereferences take up to 250 ms each,
while the rest take upto 51 seconds each. In antlr, 85% of
dereferences take up to 250 ms each, 14.3% take up to 100
seconds each, while the remaining 0.7% take more than 100s
and are timed out. We believe that the very low response time
of our analysis makes it more suitable for use in a interactive
development environment. In the later part of the section, we
illustrate that in spite of having a very low response time our
analysis is able to prove many complicated dereferences as
safe by traversing long inter-procedural paths.

In our analysis there are three important factors that af-
fect the scalability of the analysis wrt both time and memory,
viz. summary hits/miss, number of disjuncts and the size of
disjuncts in the DNF formulae computed after each propa-
gation. We now present a few metrics that provides insight
into these three factors. Figure 12 shows how the average
disjunct size (averaged over all the disjuncts that arose at
all program points) varies across the analyses of the deref-
erences for each of the benchmarks. Each point (x,y) in the
graph means that in y percentage of dereferences the aver-
age disjunct size was less than or equal to x. The disjunct
sizes can be less than one, because in our implementation

the empty disjunct (disjunct with no predicates) models log-
ical truth. From Figure 12, it can be seen that almost 100% of
the dereferences have the average disjunct size less than or
equal to 2 (across all benchmarks). It is to be noted that the
maximum disjunct size can only be 4 as we bound the dis-
junct sizes. However, Figure 12 illustrates that at least 90%
of all the dereferences in each program have average dis-
junct size less than or equal to 1.5. This is because (a) We
do not include all the branch conditions encountered during
a propagation of the disjunct into the disjunct (as discussed
in Section 4.2, Issue 3), (b) We drop a predicate from a dis-
junct after it has been propagated through 1000 statements
(see Section 2.1.2). Later, in Section 5.4.1, we show that in
spite of having a very low disjunct size we are able to invali-
date many unsatisfiable paths compared to a path-insensitive
analysis.

We now discuss the metric average number of disjuncts
per propagation, which refers to the ratio of the total num-
ber of disjuncts that were generated at all program points
during the analysis of a dereference to the total number of
propagations performed by the analysis (each application
of a transfer function in Figure 3 is regarded as a propa-
gation). It is only when a disjunct is propagated through a
PUTFIELD statement that the number of disjuncts that re-
sults after the propagation can become more than one. As
discussed in Section 2.1.2, after every PUTFIELD rule po-
tentially 2k disjuncts can be created, where k is total number
of (unique) prefixes of the access-paths in the input disjunct.
In our analysis, when a propagation through a statement re-
sults in a disjunct becoming false we stop its propagation.
Hence, whenever a propagation invalidates an incoming dis-
junct, the number of disjuncts that results after the propaga-
tion is considered zero. For these reasons, the average num-
ber of disjuncts per propagation could be less than 1. We
find that in all our benchmarks, for about 99% of the deref-
erences the average number of disjuncts per propagation is
between 0.8 and 1, which indicates that the blow-up due to
the PUTFILED rule is insignificant; i.e, most of the disjuncts
that are added by the PUTFIELD rule get invalidated after a
few propagations.

Figure 13 shows how the summary miss percentage varies
across the dereference analyses for each of the benchmarks.
We define summary miss percentage as the percentage ra-
tio of the total number of times the summary lookups failed
(see Line 18 in Figure 6) to the total number of times the
summary lookups were performed during an analysis (the
condition in Line 15). We do not count the summary lookup
that happens the first time a method is encountered during
the analysis of a dereference as it would be a compulsory
miss. It is to be noted that we do not share the summaries
across analyses of different dereferences, even within the
same program. Figure 13 shows that in each of the bench-
marks (except bcel), for about 45% of all the dereferences in



Figure 13. Summary miss percentages

the benchmark the summary miss ratio of the analysis is less
than or equal to 30%.

5.3 Evaluation of the complexity of the dereferences
reported as safe

In this section we present some metrics that highlights the
characteristics of the safe dereferences identified by our
analysis.

An advantage of our analysis is that it can propagate dis-
juncts over long inter-procedural paths. To measure the ex-
tent of the inter-procedural propagation our analysis per-
formed, we use two metrics (a) propagation count (b)
context-depth. We use the term propagation count to refer
to the maximum length of the path along which a disjunct is
propagated during the analysis of a dereference. A summary
hit is counted as a single propagation. Figure 14 shows for
each benchmark, the number of safe dereferences belonging
to each of the six propagation count ranges shown along the
x-axis. We limit the heights of the bars to 500, and show the
actual height of each truncated bar on top of the bar. There
are 81 (ourtunes) to 630 (l2j) safe dereferences in all the five
larger programs that have a propagation count > 50 (see
Part (a) of the figure). l2j and antlr have 100 and 138 safe
dereferences with propagation count > 400. Interestingly,
in l2j, the maximum propagation count was 1991 indicating
that a dereference was proven safe after exploring a path of
length 1991. Part (b) of the figure shows a similar trend for
all the five smaller programs. In these programs (not count-
ing javacup) there are 109 (bcel) to 287 (sablecc) safe deref-
erences with propagation count > 50.

The results clearly illustrate that our analysis is able to
prove significant number of dereferences safe by exploring
long paths. It is to be noted that, as mentioned in Section 5.2
our analysis has a very low response time in spite of travers-
ing long paths.

We now present a metric context-depth that captures
the maximum length of the call chain (measured from the
method containing the dereference) that had to be explored
by the analysis to prove a dereference safe. Formally, we
define context depth of a dereference as the sum of the max-
imum number of entries in the context stack (at any point
in the analysis of the dereference) used in the our inter-
procedural analysis algorithm (see Figure 6) plus the num-
ber of methods that were exited through their entry state-
ments but were not previously entered through their exit
statements (these are the transitive callers of the method
that contains the root dereference). For every dereference the
context depth will be at least 1 by the above definition. Fig-
ure 15(a) shows that for 3 out of 5 programs (viz. l2j, antlr
and freecol) there are 883 (antlr) to 1161 (freecol) safe deref-
erences with context depth ≥ 3. Particularly, in antlr 150
dereferences are proven safe after exploring inter-procedural
paths with context depth> 10, indicating the need for a deep
inter-procedural analysis for these dereferences. In fact, it
can be seen from the Figure 15(a) that there are dereferences
with context-depth of up to 160. Figure 15(b) shows a sim-
ilar trend for the five smaller programs. In four programs
(viz.sablecc, javacup, jbidwatcher and bcel), there are 170
(jlex) to 766 (sablecc) safe dereferences with context depth
≥ 3. In particular bcel and sablecc each have more than 700
dereferences with context depth ≥ 3.

The dereferences with high context depth are diffi-
cult to discover as safe through manual code analysis.
The Figure 16 shows a code snippet taken from the
l2j benchmark that has a high context depth. In Fig-
ure 16 the root dereference is the variable t at line
number 31. The root predicate before the line num-
ber 30 would be airship. position = null . It has to be
propagated through the constructors of L2AirshipInstance,
L2Character, L2Object and then through the methods init-
Position and setObjectPosition where it is proven to be safe.
In this example the context depth is 6 which is the length
of the call chain from L2AirshipInstanceParseLine to setO-
bjectPosition.

Another interesting measure of the complexity involved
in proving a dereference safe is the length of the longest
access-path encountered during the analysis of the derefer-
ence. In our experiments we found that for four of our bench-
marks, namely, bcel, jlex, proguard, and antlr, around 1%
to 10% of the safe dereferences have maximum access-path
length greater than 2. In particular, in jlex some of the safe
dereferences discovered by our analysis required access-
paths of length up to 6. It is to be noted that in Salsa [13]
the access-path lengths are limited to 2. Our finding illus-
trates that such a limit can prevent the analysis from proving
a significant number of dereferences as safe in some bench-
marks.



(a) large programs (b) small programs

Figure 14. Distribution of dereferences with respect to the propagation count of their analysis

(a) large programs (b) small programs

Figure 15. Distribution of the number of safe dereferences with respect to the context depth of their analysis

5.4 Evaluation of optimizations
As discussed in Section 4.2, we various optimizations and
heuristics to make the analysis scale to real world Java pro-
grams. In this section we measure the impact of these op-
timizations on precision/scalability through a series of ex-
periments carried out on our benchmarks. Due to the high
running time and memory overhead in analysing freecol and
antlr, we exclude them from this series of experiments.

5.4.1 Evaluation of limited path-sensitivity
We evaluate our default analysis (with all our optimizations,
including limited path sensitivity) that we used to report all
the results above by comparing it with two variants of our
analysis (a) a variant that includes all branch conditions in
the path (upto a specified bound), referred to as mode(a)

(b) a variant that includes no branch conditions at all in
the path (i.e. path insensitive), referred to as mode(b). In
mode(a), which tracks all branch conditions, we enriched
the predicate domain to include predicates involving boolean
variables and integers. However we do not model integer
arithmetic and track only <,>,= comparisons on integers.
We also added new simplification rules to the simplifier
so that it takes into account the new predicates (involving
boolean variables and integers) during the simplification of
a disjunct. In fact, the domain and the simplifiers we used
are very similar to those used in Xylem [15]. We found
that tracking all branches without any limit will not scale
to even the smallest of our programs viz. jlex. Hence, we
bounded the disjunct sizes using the parameters k1 and k2
(see Section 2.1.2), which limit the number of propagations



1 class L2Object {

ObjectPosition _position

2 public L2Object(){

3 ...

4 initPosition();

5 }

6 public void initPosition(){

7 ...

8 setObjectPosition(new CharPosition(this))

9 }

10 public void setObjectPosition(...) {

11 _position = value

12 }

13 public ObjectPosition getPosition() {

14 return _position;

15 }

16 }

17 class L2Character extends L2Object {

18 public L2Character() {

19 super()

20 }

21 }

22 class L2AirShipInstance extends L2Character {

23 public L2AirShipInstance() {

24 super()

25 }

26 }

27 public void L2AirShipInstanceParseLine() {

28 ...

29 airship = new L2AirShipInstance(..);

30 t = airship.getPosition()

31 t.setHeading();

32 ...

33 }

Figure 16. A real world example with high context depth

of a predicate and the sizes of the disjuncts. We set k1 and
k2 to the same values as in the default setting (which is 1000
and 3 respectively).

Figure 17 shows the number of unsafe reports and the
time taken (excluding preprocessing time) for running the
analysis on all the dereferences in each of the 3 different
modes. In spite of having the bounds on the disjuncts, the
version that tracks all branches, mode(a), did not scale to
many of the larger programs (which are not shown in Fig-
ure 17) within reasonable time limits.

Figure 17 also shows that the version without path-
sensitivity, mode(b), is very imprecise in comparison with
the limited path-sensitivity mode. In fact, it even takes more
time than limited path-sensitivity mode (because the limited
path-sensitive mode can avoid propagation through unsatis-
fiable paths thereby, reducing the running time). An interest-
ing observation is that for jlex, the precision of the mode(a)
is actually less than that of the limited path-sensitivity mode.
This is because in mode(a) some of the relevant branch pred-
icates (conditions that can invalidate a path) get crowded out

by less relevant predicates (due to bounds on disjunct sizes)
before they come in useful to invalidate the disjunct.

5.4.2 Evaluation of limited library analysis
As discussed in Section 4.2, Issue 6, we over-approximate
the effect of a library method using its Mod-Ref information,
except in the cases where its return value is used in an
access-path. We also provide two manually created lists, viz.
the skip and analyze lists, to the analysis to mitigate the
loss of precision due to the above approximation. Similarly,
we also prevent the propagation of a disjunct reaching the
entry of an analyzed method through its caller if it happens
to be a library method (referred to as library call-back).
To evaluate the precision/scalability trade-off in using this
approach, we consider two variants of our analysis (viz.
mode(a) and mode(b)) as explained below, and compare
them with our default analysis (all optimizations turned on).

In mode(a) we allow the analysis to analyze all library
methods that are found to have a side-effect on an access-
path by the WALA’s Mod-Ref analysis, and also allow a
disjunct reaching the entry of a method to be propagated
through all its callers irrespective of whether they belong to
the library or not. In mode(b) we perform a limited library
analysis but do not use the manually created skip/analyze
lists. Note that the use of the analyze list can increase preci-
sion, but with extra cost in analysis time. The skip list neither
increases or decreases the running time, impacting only pre-
cision.

Figure 18 shows the result of analysing the benchmarks in
the three different modes. We use∞ in Figure 18 to denote
that the analysis of a benchmark did not complete within a
reasonable time limit (which is more than twice the analysis
time of the limited library analysis mode).

Figure 18 shows that mode(a) (in which all the libraries
having side-effects are analyzed) does not scale to many of
the large benchmarks, clearly indicating that analysing all
library methods will not scale to real world applications.

In mode(b) (in which analyze and skip lists are not used),
the analysis time is significantly lower than the limited li-
brary analysis mode for some benchmarks like jbidwatcher.
This is because mode(b) analyses even fewer library meth-
ods than the limited library analysis mode. However, it re-
sults in some loss of precision in half of the programs shown
in Figure 18. In fact, in ourtunes, mode(b) results in almost
5% increase in the number of reported unsafe dereferences
compared to the limited library analysis mode.

5.4.3 Evaluation of weaker disjunct summary reuse
optimization

As mentioned in Section 3.2, in cases where we do not have
a mapping for a disjunct (say φ1) in the summary table,
but have a mapping for a weaker disjunct φ2, we reuse the
summary computed for the weaker disjunct φ2 provided the
the root predicate (if any) in both the disjuncts matches.
Figure 19 shows the results of running the analysis, first



Default setting Mode(a) Mode(b)
Limited path sens.: tracks a few branches Tracks all branches Tracks no branches

Benchmark Unsafe derefs Time(s) Unsafe derefs Time(s) Unsafe derefs Time(s)
bcel 1184 63 1119 8123 2501 97
javacup 607 19 463 881 1036 29
jlex 93 13 105 148 296 33

Figure 17. Result of running the analysis with different path-sensitivity

Default setting Mode(a) Mode(b)
Limited lib. analysis, with both lists Analyzes all libs limited lib. analysis, w/o the lists

Benchmark Unsafe derefs Time(s) Unsafe derefs Time(s) Unsafe derefs Time(s)
jlex 93 13 93 13 93 12
javacup 607 19 607 19 607 18
bcel 1184 63 1184 74 1184 63
jbidwatcher 1490 390 - ∞ 1493 103
sablecc 2116 252 - ∞ 2116 239
ourtunes 1495 227 - ∞ 1540 222
proguard 2778 207 - ∞ 2783 183
l2j 5727 545 - ∞ 5746 533

Figure 18. Evaluation of the precision/scalability trade-off in analysing library methods

Default setting w/o Weaker disjunct
Summary reuse

Benchmark Unsafe Time(s) Unsafe Time(s)
derefs derefs

jlex 93 13 92 18
javacup 607 19 607 18
bcel 1184 63 1184 104
jbidwatcher 1490 390 1490 597
sablecc 2116 252 2116 275
ourtunes 1495 227 1495 228
proguard 2778 207 2778 204
l2j 5727 545 5727 550

Figure 19. Results of the analysis with and without the
weaker disjunct summary reuse optimization

in the default mode (i.e., with all optimizations), and then
without the reuse optimization.

It can be seen that for most of the programs shown in
Figure 19, the analysis time increases in the absence of this
optimization (particular for bcel and jbidwatcher). Figure 19
also shows that this optimization has no negative impact on
the precision of the analysis (i.e, the number of error reports)
in all programs, except jlex in which the number of error
reports increased by just 1.

6. Comparison with related work
The approaches of Xylem [15], Salsa [13] and Spoto [19] are
the most closely related approaches to ours, in the sense that

they target null-dereference analysis of real Java programs.
We discuss these approaches in detail first, and later give an
overview of other related techniques.

Xylem. Xylem is a bug finding technique rather than a ver-
ification technique, meaning they may miss real bugs, and
may also report false positives. Our approach, though aim-
ing at verification, has several attributes that are inspired
by Xylem; e.g., a demand-driven backward dataflow analy-
sis from each dereference, predicates as dataflow facts, cus-
tom simplification rules for predicates rather than a theo-
rem prover, a context-stack during inter-procedural dataflow
propagation for context-sensitivity, abstracting out arith-
metic, and inter-procedural summary tables for efficiency.
However, there are several key differences. Xylem aims for
very high precision, and hence uses a richer set of predicates
that result in a greater extent of path-sensitivity. This could
have an adverse impact on scalability. In order to ensure
reasonable analysis time they enforce various limits on the
analysis, like the sizes of disjuncts (which we do, too), the
number of paths analyzed from a dereference (we do not),
and even on the analysis time (which we do not). When the
analysis of a dereference gets terminated due to any of these
thresholds being crossed, they ignore the dereference and go
on to the next one, implying unsoundness.

In our approach, we aim to conservatively label each
dereference as safe or unsafe, with reasonable precision,
meaning we need to maximize the number of paths back
from the dereference that we analyze, as well as the depths
of these paths. Therefore, for scalability, we use a smaller



lattice, and more limited path-sensitivity. Within this setting,
in order to maximize precision, we do not drop an entire
disjunct when its size crosses a threshold, which would im-
mediately terminate the analysis (with an “unsafe” answer);
instead, we drop individual “old” predicates from the dis-
junct in order to reduce its size, and then continue its prop-
agation (as discussed in Section 2.1.2). Also, when we en-
counter a library call that we choose not to analyze (as dis-
cussed in Section 4), we drop individual predicates that may
be mutated by the call, and not the entire disjunct. There-
fore, we give up precision in a fine-grained manner. We also
address recursion completely, analyzing a recursive method
until a fix-point is reached; Xylem does not compute fix-
points for recursive methods, instead using ad-hoc bounds
to terminate the analysis. Another distinction is that we per-
form strong updates at put-field statements for precision, by
keeping track of hypotheses on aliasing relations between
variables, and validating (or invalidating) these hypotheses
at assignment statements. Having mentioned these distinc-
tions between the two approaches, it is worth reiterating that
Xylem’s objective is different from ours (i.e., to find a few,
important bugs), which means some of these distinctions are
sensible from both perspectives.

In subsequent work [14] the same authors apply Xylem,
with a few modifications, to the problem of identifying nec-
essary conditions on inputs to model-transformation pro-
grams that cause these programs to throw various excep-
tions, including null-dereference exceptions.

Salsa. Salsa is an approach that aims at sound null-
dereference verification of Java programs. It is not based on
propagating conditions. Rather, it is a (non-demand-driven)
dataflow analysis that uses a custom designed lattice to track
at each program point access paths that are known to be def-
initely non-null at that point. In their approach they perform
limited-scope analysis (in terms of depths of call-chains con-
sidered) for scalability; we have shown scalability without
scope limitation; in fact, in our evaluation we have found
numerous dereferences that require analysis over deep call
chains. Also, the extent to which Salsa can perform strong
updates is dependent on the precision of a pre-requisite
must-alias analysis, whereas we avoid the need for must-
alias analysis by keeping track of aliasing relationships at
each point in each path that we analyze.

In order to facilitate a quantitative comparison between
our approach and theirs, we have chosen 8 benchmarks from
their list of benchmarks (plus two more from outside their
list). While on two of these benchmarks (namely, jlex and
bcel) the percentage of dereferences we report as unsafe is
less than their corresponding number, they do better on the
other six benchmarks. This said, precision comparisons be-
tween the two approaches are difficult, for multiple reasons.
For many of the benchmarks they report a benchmark size
that is much smaller than our corresponding number; poten-
tial reasons for this include differences in version numbers

(they do not indicate the version numbers they use), and in
the entry points into the program that were considered. More
importantly, they appear to never analyze library methods,
and depend on programmer specifications of the behaviors
of these libraries. We analyze library methods, in general,
with some exceptions. In our experiments, over all bench-
marks, we entered and analyzed the bodies of 625 distinct
library methods. It is very difficult to write meaningful, pre-
cise specifications for library methods, especially when they
have side effects. The only manual inputs we use are the
skip-list and the analyze-list of library methods, which are a
very simple form of specification.

The approach of Spoto. Spoto describes a flow- and
context-sensitive forward, non-demand driven, static anal-
ysis to conservatively find null dereferences. They address
exceptions, but not multi threaded programs. They use an
abstract lattice of formulas that is more expressive than ours,
wherein they encode formulas using Binary Decision Di-
agrams (BDDs). Somewhat surprisingly, it is actually not
clear that their precision is better than ours in practice. There
are two common programs in our benchmark set and theirs
– jlex and javacup. They report separate precision numbers
for “getfield”, “putfield”2, and “call” dereferences, whereas
we report a single overall precision number over all derefer-
ences. On jlex our overall precision is 96.3%, whereas theirs
works out to 78.7%. In the case of javacup, our overall pre-
cision is 78.7%, while theirs works out to 85.4%. There a
couple noteworthy caveats, though: they do not mention the
version of each program they analyze, nor the number of
dereferences in each program, nor the exact procedure they
use to select the dereferences (we analyze all dereferences
in methods reachable from the entry points). Regarding run-
ning time, our analysis time over all dereferences is approxi-
mately double theirs, but our analysis is demand driven, with
no sharing of intermediate results at all between analyses of
different root dereferences.

Other related techniques. There have been several ap-
proaches reported in the literature for verifying assertions in
programs using very precise forms of reasoning. (Note that
safety checking of assertions is a more general problem, of
which dereference verification is an instance.) For instance,
Slam [1] uses predicate abstraction, and counter-example
guided abstraction refinement, to initially over-approximate
the weakest at-least-once pre-condition of a given condition,
and then successively strengthen the over-approximation un-
til a concrete trace is produced or a timeout is reached. Syn-
ergy [10] follows a similar approach, but uses concolic, i.e.,
simultaneous concrete and symbolic execution, to accelerate
the strengthening of the over-approximation. The approach
of Dillig et al [6] over-approximates the weakest at-least-
once pre-condition directly, without predicate abstraction.

2 Although it is not fully clear from their paper, we assume that they include
arrayload and arraylength instructions within their getfield category,
and arraystore instructions within their putfield category.



These systems have been designed for property-verification
in C programs, and have been shown to be precise in prac-
tice. While in theory they could be used for null-dereference
verification for Java, their practical applicability in this set-
ting is not clear. Large Java programs have certain charac-
teristics not shared by C programs, such as extensive use
of heap references, virtual method dispatch, deeply nested
method calls (with small methods), and call backs. More-
over, these approaches do not appear efficient enough for
use by an individual developer as a part of their desktop de-
velopment environment to verify dereferences in a large ap-
plication.

ESC/Java [8] and Spec# [2] use an abstraction-free weak-
est pre-condition analysis to verify assertions. They rely
extensively on programmer-given annotations, e.g., method
pre- post- conditions, and loop invariants, for completeness,
modularity, and scalability.

There are several approaches, e.g., Snugglebug [3], Java
PathFinder [20], and DART [9], that use precise symbolic
or concolic analysis to search for a concrete execution path
that ends at a given program point with a state that satisfies
a given condition. In other words, these approaches under-
approximate the weakest at-least-once pre-condition, rather
than over-approximate it (as we do). These approaches may
not always terminate in their search in the presence of loops
and recursion. Their approach is applicable when one is
trying to confirm a potential bug, but is not applicable to the
problem of proving that an assertion is safe. (The approach
of Dillig et al, as well as Synergy, are capable of under-
approximation also.)

It is noteworthy that there are several interesting ideas
used in the over-approximating as well under-approximating
approaches mentioned above, that could potentially be in-
corporated into our own approach to improve its precision,
scalability, or suitability for checking properties other than
dereference safety.

7. Conclusions and Future Work
We have presented a demand-driven approach for verifica-
tion of null-dereferences, based on over-approximation of
the weakest at-least-once pre-condition, using a novel set of
design decisions to make the approach practical. We have
implemented the approach, and have evaluated it on a set
of real Java programs. Our experimental results indicate the
our approach is scalable to large programs, has very quick
response time per dereference, and has reasonable precision.
To the best of our knowledge ours is the first practical
weakest pre-conditions-based verification approach to be
demonstrated on large, real Java programs. Future work will
be guided by objective of increasing the precision of the
approach, while still retaining its practicality and demand-
drivenness. In particular, we would like to investigate more
precise techniques to reason about references to arrays and
recursive data structures, perhaps by inferring and using

specifications for container classes (which often encapsulate
arrays and recursive data structures). We would also like to
investigate efficient approaches to deal with difficult idioms
such as call backs. Finally, we would also like to investigate
application of our approach to verification problems other
than null-dereference analysis.
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A. Formalizing our analysis as an abstract
interpretation

In this section we sketch a formulation of our weakest at-
least once pre-condition analysis as an abstract interpreta-
tion. As is conventional, we first formulate the concrete se-
mantics as a dataflow analysis. The concrete lattice is the
powerset lattice of the set of states (i.e., concrete stores). The
backward concrete transfer function cst of any statement st is
as follows: If st is any statement other than an ASSUME then
cst = λS.{s1 | ∃s2 ∈ S : st transforms s1 to s2}. If st is
“ASSUME b” then cst = λS.{s | s ∈ S and s satisfies b}. The
join operation is union (therefore, ≤ is ⊆). Let p be a pro-
gram point, and C be a post-condition at p. The initialization

of the concrete analysis is as follows: the set of stores satis-
fying C at p, and the empty set at all other program points. It
is easy to show that the join over all paths solution at the en-
try of the program according to the above concrete analysis
is precisely the set of states that satisfy wp1(p, C).

Our abstract lattice and transfer functions were pre-
sented in Section 2. The concretization function γ is λF ∈
Formula.{s | s satisfies F}, which is monotonic. For each
statement type st the abstract transfer function fst for st
is the composition of its flow function in Figure 3 and
the simplifier fules in Figure 5 (as was discussed in Sec-
tion 2.2). Each abstract transfer function fst is monotonic,
and also conservatively over-approximates the correspond-
ing concrete transfer function cst ; i.e., for any formula F ∈
Formula , γ(fst(F )) ⊇ cst(γ(F )). The initialization for the
abstract analysis is as follows: the given disjunct (i.e., post-
condition) C at the given program point p, and the empty set
(i.e., false) at all other points. Therefore, it follows that the
pre-condition computed at the program’s entry by our anal-
ysis is equal to or weaker than wp1(p, C).

It is instructive to contrast our analysis with a weakest
pre-conditions analysis. Whereas we over-approximate the
weakest at-least once pre-condition, it is natural to under-
approximate the weakest pre-condition. In this setting, the
backward abstract transfer fst of any statement st, when
applied to any formula F , ought to return a formula F ′

such that when st is executed on the set of states S′ that
satisfy F ′, every state that results satisfies F . We omit the
details of the lattice and transfer functions in this setting,
which are somewhat different from the ones we use. For
instance, for the GETFIELD instruction v = r.f , the transfer
function when applied to a post-condition φ would return
a pre-condition r = null ∨ φ[r.f/v], rather than what we
return, namely r 6= null ∧ φ[r.f/v]; also, in order to bound
any access path safely, the transfer function would need to
make the predicate that contains the access path false , rather
than true . Furthermore, while the concretization function γ
would be the same as in our setting, the join operation on the
abstract lattice would be logical AND (rather than the union
we use, which implements logical OR).


