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Abstract. We present an approach for inferring symbolic resource
bounds for purely functional programs consisting of recursive functions,
algebraic data types and nonlinear arithmetic operations. In our ap-
proach, the developer specifies the desired shape of the bound as a
program expression containing numerical holes which we refer to as tem-
plates. For e.g, time ≤ a ∗ height(tree) + b where a, b are unknowns, is
a template that specifies a bound on the execution time. We present a
scalable algorithm for computing tight bounds for sequential and parallel
execution times by solving for the unknowns in the template. We em-
pirically evaluate our approach on several benchmarks that manipulate
complex data structures such as binomial heap, lefitist heap, red-black
tree and AVL tree. Our implementation is able to infer hard, nonlinear
symbolic time bounds for our benchmarks that are beyond the capability
of the existing approaches.

1 Introduction

This paper presents a new algorithm and a publicly available tool for infer-
ring resource bounds of functional programs.1 We focus on functional languages
because they eliminate by construction low-level memory errors and allow the
developer to focus on functional correctness and performance properties. Our
tool is designed to automate reasoning about such high-level properties. We ex-
pect this research direction to be relevant both for improving the reliability of
functional programming infrastructure used in many enterprises (e.g. LinkedIn,
Twitter, several banks), as well as for reasoning about software and hardware
systems within interactive theorem provers [17], [21], [29], [12], [19], which often
model stateful and distributed systems using functional descriptions.

The analysis we present in this paper aims to discover invariants (e.g. function
postconditions) that establish program correctness as well as bounds on parallel
and sequential program execution time. Such invariants often contain invocations
of user-defined recursive functions specific to the program being verified, such
as size or height functions on a tree structure. We therefore need a verification
technique that can prove invariants that are expressed in terms of user-defined

1 To download the tool please see http://lara.epfl.ch/w/software
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functions. To the best of our knowledge, our tool is the first available system
that can establish such complex resource bounds with this degree of automation.

Our tool can show, for example, that a function converting a propositional
formula into negation-normal form takes no more than 44·size(f)−20 operations,
where size(f) is the number of nodes in the formula f . The tool also proves that
the depth of the computation graph (time in an infinitely parallel implementa-
tion) is bounded by 5 · h(f) − 2, where h(f) ≥ 1 is the height of the formula
tree. As another example, it shows that deleting from an AVL tree requires the
number of operations given by 145 ·h(t)+19, where h(t) ≥ 0 is the height of the
tree t, whereas the depth of the computation graph is 51 · h(t) + 4.

Our tool takes as input the program, as well as the desired shapes of invariants,
which we call templates. The goal of the analysis becomes finding coefficients
in the templates. The coefficients in practice tend to be sufficiently large that
simply trying out small values does not scale. We therefore turn to one of the
most useful techniques for finding unknown coefficients in invariants: Farkas’
lemma. This method converts a ∃∀ problem on linear constraints into a purely
existential problem over non-linear constraints.

The challenge that we address is developing a practical technique that makes
such expensive non-linear reasoning work on programs and templates that con-
tain invocations of user-defined recursive functions, that use algebraic data types
(such as trees and lists), and that have complex control flow with many disjunc-
tions.

We present a publicly available tool that handles these difficulties through
an incremental and counterexample-driven algorithm that soundly encodes al-
gebraic data types and recursive functions and that fully leverages the ability
of an SMT solver to handle disjunctions efficiently. We show that our technique
is effective for the problem of discovering highly application-specific inductive
resource bounds in functional programs.

2 Background and Enabling Techniques

We first present key existing technology on which our tool builds.

2.1 Instrumenting Programs to Track Resource Bounds

Our approach decouples the semantics of resources such as execution time from
their static analysis. We start with the exact instrumentation of programs with
resource bounds, without approximating e.g. conditionals or recursive invoca-
tions. To illustrate our approach, consider a simple Scala [22] program shown
in Fig. 1, which appends a list l2 to the reverse of l1. We use this program as
our running example. The recursive function size counts the length of its list
argument; it is user-defined and omitted for brevity.

Fig. 2 illustrates the instrumentation for tracking execution time on this
example. For every expression e in the program the resource consumed by e
is computed as a function of the resources consumed by its sub-expressions.
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def revRec(l1:List, l2:List) : List =
(l1 match {
case Nil() ⇒ l2
case Cons(x,xs) ⇒
revRec(xs, Cons(x, l2))

})
ensuring(res ⇒ time ≤ a∗size(l1) + b))

Fig. 1. Appending l2 to the reverse of l1

def revRec(l1:List,l2:List):(List,Int) =
(l1 match {
case Nil() ⇒ (l2, 1)
case Cons(x,xs) ⇒
val (e, t) = revRec(xs, Cons(x,l2))
(e, 5 + t) })

ensuring(res ⇒ res. 2 ≤ a∗size(l1) + b))

Fig. 2. After time instrumentation

For instance, the execution time of an expression (such as e1 ∗ e2) is the sum
of the execution times of its arguments (e1 and e2) plus the time taken by the
operation (here, ∗) performed by the expression (in this case, 1). We expose the
resource usage of a procedure to its callers by augmenting the return value of the
procedure with its resource usage. The resource consumption of a function call is
determined as the sum of the resources consumed by the called function (which
is exposed through its augmented return value) plus the cost of invoking the
function. The cost of primitive operations, such as +, variable access, etc., are
parametrized by a cost model which is, by default, 1 for all primitive operations.

Another resource that we consider in this paper is depth, which is a measure
of parallelism in an expression. Depth [6] is the longest chain of dependencies
between the operations of an expression. The depth and work (the sequential
execution time) of programs have been used by the previous works to accurately
estimate the parallel running times on a given parallel system [6]. Fig. 3 and
Fig. 4 illustrate the instrumentation our tool perform to compute the depth
of a procedure that traverses a tree. We compute the depth of an expression

def traverse(t: Tree) = (t match {
case Leaf() ⇒ f(t)
case Node(l,v,r) ⇒
traverse(l) + traverse(r) + f(t)

)
ensuring(res ⇒ depth ≤ a∗height(t) + b)

Fig. 3. A tree traversal procedure

def traverse(t: Tree):(Tree,Int)= (t match{
case Leaf() ⇒ f(t)
case Node(l,v,r) ⇒
val (el, dl) = traverse(l)
val (er, dr) = traverse(r)
val (e, d) = f(t)
(el+er+e, max(max(dl,dr)+1,d)+5)) })

ensuring(res ⇒ res. 2 ≤ a∗height(t) + b)

Fig. 4. After depth instrumentation

similarly to its execution time, but instead of adding the resource usages of the
sub-expressions, we compute their maximum.

Every inductive invariant for the instrumented procedure obtained by solving
for the unknowns a, b is a valid bound for the resource consumed by the
original procedure. Moreover, the strongest invariant is also the strongest bound
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on the resource. Notice that the instrumentation increases the program sizes,
introduces tuples and, in the case of depth instrumentation, creates numerous
max operations.

2.2 Solving Numerical Parametric Formulas

Our approach requires deciding validity of formulas of the form ∃a.∀x.¬φ, where
a is a vector of variables. The formulas have a single quantifier alternation. We
thus need to find values for a that will make φ unsatisfiable. We refer to φ as
a parametric formula whose parameters are the variables a. When the formula
φ consists only of linear inequalities, finding values for the parameters a can
be converted to that of satisfying a quantifier-free nonlinear constraint (Farkas’
constraint) using a known reduction, sketched below.

A conjunction of linear inequalities is unsatisfiable if one can derive a contra-
diction 1 ≤ 0 by multiplying the inequalities by non-negative values, subtracting
the smaller terms by non-negative values and adding the coefficients in the in-
equalities. E.g, ax+by+c ≤ 0∧x−1 ≤ 0 is unsatisfiable if there exist non-negative
real numbers λ0, λ1, λ2 such that λ1 · (ax+ by+ c)+λ2 · (x− 1)−λ0 ≤ 0 reduces
to 1 ≤ 0. Hence, the coefficients of x and y should become 0 and the constant
term should become 1. This yields a nonlinear constraint λ1a+ λ2 = 0 ∧ λ1b =
0∧ λ1c− λ2 − λ0 = 1∧ λ0 ≥ 0∧ λ1 ≥ 0∧ λ2 ≥ 0. The values of a and b in every
model for this nonlinear constraint will make the inequalities unsatisfiable.

This approach has been used by previous works [7,9,15] to infer linear invari-
ants for numerical programs. There are two important points to note about this
approach: (a) In the presence of real valued variables, handling strict inequalities
in the parametric formula requires an extension based on Motzkin’s transposi-
tion theorem as discussed in [24]. (b) This approach is complete for linear real
formulas by Farkas’ Lemma, but not for linear integer formulas. However, the
incompleteness did not manifest in any of our experiments. Similar observation
has also been documented in the previous works such as [15].

2.3 Successive Function Approximation by Unfolding

To construct verification conditions (VCs) in the presence of algebraic data-types
(ADTs) and recursive functions we use the approach employed in the Leon ver-
ifier [5,28]. The approach constructs VCs incrementally wherein each increment
makes the VC more precise by unrolling the function calls that have not been
unrolled in the earlier increments (referred to as VC refinement). The functions
in the VCs at any given step are treated as uninterpreted functions. Hence, every
VC created is a sufficient but not necessary condition for the postcondition to be
inductive. The postcondition is inductive if any of the generated VCs are valid.
The refinement of VCs continues forever until the postcondition is proven. In
our implementation, we enforce termination by bounding the number of times a
recursive function call is unrolled (fixed as 2 in our experiments).
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We explain the VC generation and refinement on the revRec function shown
in Fig. 2. The initial VC that we create for revRec is shown below

∀l1, l2, res, x, xs, e, t, r, f1, f2, size, revRec. ¬φ
φ ≡ ((l1 = Nil() ∧ res = (l2, 1)) ∨ (l1 = Cons(x, xs) ∧ res = (e, 5 + t) ∧ (e, t) =

revRec(xs, Cons(x, l2))) ∧ f2 > ar + b ∧ r = size(l1) ∧ res = (f1, f2) (1)

The function symbols in the VC are universally quantified as they are treated as
uninterpreted functions. The combined algorithm presented in the next section
solves for the parameters a, b so that the VC holds for any definition of size and
revRec. If the formula (1) has no solution, it then refines the VC by unrolling
the calls to size and revRec. For instance, unrolling r = size(l1) in the above
formula will conjoin the predicate with the formula (l1 = Nil() ∧ r = 0) ∨ (l1 =
Cons(x1, xs1)∧r = 1+ r2∧r2 = size(xs1)) that corresponds to the body of size.
The subsequent refinements will unroll the call r2 = size(xs1) and so on. Note
that, whereas unfolding is the key mechanism in Leon [5, 28], here it is used in
a new combination, with the inference of numerical parameters.

3 Invariant Inference Algorithm

We next present core techniques of our algorithm for inferring resource bounds.
The algorithm introduces new techniques and combines the existing techniques
to overcome their individual weaknesses.

3.1 Solving Formulas with Algebraic Data Types and Recursion

We first describe our approach for solving parametric formulas that are simi-
lar to constraint (1) with ADTs, uninterpreted functions, linear and nonlinear
arithmetic operations.

Eliminating Uninterpreted Functions and ADT Constructors from
Parametric Disjuncts. Let d be a parametric formula with parameters param
defined over a set of variables X and uninterpreted function symbols Xf . We
reduce this to a formula d′ that does not have any uninterpreted functions and
ADT constructors using the axioms of uninterpreted functions and ADTs as
described below. We convert d to negation normal form and normalize the re-
sulting formula so that every atomic predicate (atom) referring to uninterpreted
functions or ADTs is of the form r = f(v1, v2, . . . , vn) or r = cons(v1, v2, . . . , vn)
where f is a function symbol, cons is the constructor of an ADT and r, v1, . . . , vn
are variables. We refer to this process as purification. Let F and T be the set of
function atoms and ADT atoms in the purified formula.

let δ1 =
∧{(

n∧

i=1

vi = ui) ⇒ (r = r′) | r = f(v1, . . . , vn),
r′ = f(u1, . . . , un) ∈ F}

let δ2 =
∧{(

n∧

i=1

vi = ui) ⇔ (r = r′) | r = cons(v1, . . . , vn),
r′ = cons(u1, . . . , un) ∈ T }

let δ = (purify(d) \ (F ∪ T )) ∧ δ1 ∧ δ2
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where δ \ (F ∪ T ) is a formula obtained by substituting with true every atomic
predicate in F or T . Notice that the above elimination procedure uses only the
fact that the ADT constructors are injective. Due to this the completeness of
our approach may not be immediately obvious. In section 3.2 we formalize the
completeness property of our approach.

Applying the above reduction to the disjunct dex of Constraint (1) along which
l = Nil(), results in a constraint of the form sketched below. We consider tuples
also as ADTs.

purify(dex) =

{
(l1 = Nil() ∧ res = (l2, 1) ∧ f2 > ar + b

∧r = size(n1) ∧ res = (f1, f2)

δex = (f2 > ar + b ∧ ((l2 = f1 ∧ f2 = 1) ⇔ res = res)) (2)

The formula δ obtained by eliminating uninterpreted function symbols and
ADTs typically has several disjunctions. In fact, if there are n function symbols
and ADT constructors in d then d′ could potentially have O(n2) disjunctions

and O(2n
2

) disjuncts. Our approach described in the next subsection solves the
parametric formulas incrementally based on counter-examples.

3.2 Incrementally Solving Parametric Formulas

Figure 5 presents our algorithm for solving an alternating satisfiability problem.
Given a parametric formula, the goal is to find an assignment ι for params such
that replacing params according to ι results in unsatisfiable formula. We explain
our algorithm using the example presented in the earlier section. Consider the
VC given by constraint (1). Initially, we start with some arbitrary assignment
ι for the parameters a and b (line 5 of the algorithm). Say ι(a) = ι(b) = 0
initially. Next, we instantiate (1) by replacing a and b by 0 (line 8), which results
in the non-parametric constraint: φex : ((l1 = Nil() ∧ res = (l2, 1)) ∨ (l1 =
Cons(x, xs) ∧ res = (e, 5 + t) ∧ (e, t) = revRec(xs, Cons(x, l2)) ∧ f2 > 0 ∧ r =
size(l1) ∧ res = (f1, f2).

If the constraint becomes unsatisfiable because of the instantiation then we
have found a solution. Otherwise, we construct a model σ for the instantiated
formula as shown in line 11. For the constraint φex shown above, l1 �→ Nil(), l2 �→
Nil(), res �→ (Nil(), 1), r �→ −1 and size �→ λx.(x = Nil() → −1 | 0) is a
model. In the next step, we combine the models ι and σ and construct σ′. Note
that ι is an assignment for parameters and σ is an assignment for universally
quantified variables. Using the model σ′ we choose a disjunct of the parametric
formula (1) that is satisfied by σ′. For our example, the disjunct chosen will be
dex : l1 = Nil() ∧ res = (l2, 1) ∧ f2 > ar + b ∧ r = size(l1) ∧ res = (f1, f2).
This operation of choosing a disjunct satisfying a given model can be performed
efficiently in time linear in the size of the formula without explicitly constructing
a disjunctive normal form.

The function elimFunctions invoked at line 14 eliminates the function symbols
and ADT constructors from the disjunct d using the approach described in sec-
tion 3.1. Applying elimFunctions on dex results in the formula δex given by (2).
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1 input : A parametric linear formula φ with parameters ’params’
2 output : Assignments for params such that φ(params) is unsatisfiable
3 or ∅ if no such assignment exists
4 def solveUNSAT(params, φ) {
5 construct an arbitrary initial mapping ι : params �→ R

6 var C = true
7 while(true) {
8 let φinst be obtained from φ by replacing every t ∈ params by ι(t)
9 if (φinst is unsatisfiable) return ι

10 else {
11 choose σ such that σ |= φinst

12 let σ′ be ι 	 σ
13 choose a disjunct d of φ such that σ′ |= d
14 let δ be elimFunctions(d)
15 choose a disjunct d′ of δ such that σ′ |= d′

16 let dnum be elim(d′)
17 let Cd be unsatConstraints(dnum)
18 C = C ∧ Cd

19 if (C is unsatisfiable) return ∅
20 else {
21 choose m such that m |= C
22 let ι be the projection of m onto params }}}}

Fig. 5. A procedure for finding parameters for a formula to make it unsatisfiable.
unsatConstraints generates nonlinear constraints for unsatisfiability of a disjunct as
illustrated in section 2.2.

We choose a disjunct d′ of δ that satisfies the model σ′. For our example, the dis-
junct of δex that will be chosen is d′ex : l2 = f1∧f2 = 1∧res = res∧f2 > ar+b.

Eliminating Non-numerical Predicates from a Disjunct (elim). We now
describe the operation elim at line 16. Let d′ be the parametric disjunct chosen
in the previous step. d′ is a conjunction of atomic predicates (atoms). Let dt
denote the atoms that consist of variables of ADT type or boolean type. Let dn
denote the atoms that do not contain any parameters and only contain variables
of numerical type. Let dp denote the remaining atoms that has parameters and
numerical variables.

For the example disjunct d′ex, dt is l2 = f1, dn is f2 = 1 and dp is f2 > ar+b.
The disjunct dt can be dropped as dt cannot be falsified by any instantiation
of the parameters. This is because dp and dt will have no common variables.
The remaining disjunct dn ∧ dp is completely numerical. However, we simplify
dn ∧ dp further as explained below. We construct a simplified formula d′n by
eliminating variables in dn that do not appear in dp by applying the quantifier
elimination rules of Presburger arithmetic on dn [23]. In particular, we apply
the one-point rule that uses equalities to eliminate variables and the rule that
eliminates relations over variables for which only upper or lower bounds exist.
dn ∧ dp is unsatisfiable iff d′n ∧ dp is unsatisfiable.
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Typically, dn has several variables that do not appear in dp. This elimination
helps reduce the sizes of the disjuncts and in turn the sizes of the nonlinear
constraints generated from the disjunct. Our experiments indicate that the sizes
of the disjuncts are reduced by 70% or more.

We construct nonlinear Farkas’ constraints (line 17) for falsifying the dis-
junct dnum, obtained after elimination phase, as described in section 2.2. We
conjoin the nonlinear constraint with previously generated constraints, if any
(lines 17,18). A satisfying assignment to the new constraint will falsify every
disjunct explored thus far. We consider the satisfying assignment as the next
candidate model ι for the parameters and repeat the above process.

If the nonlinear constraint C is unsatisfiable at any given step then we con-
clude that there exists no solution that would make φ unsatisfiable. In this case,
we refine the VC by unrolling the functions calls as explained in section 2.3 and
reapply the algorithm solveUNSAT on the refined VC.

Correctness, Completeness and Termination of solveUNSAT

Let F denote parametric linear formulas belonging to the theory of real arith-
metic, uninterpreted functions and ADTs, in which parameters are real valued
and appear only as coefficients of variables.

Theorem 1. Let φ ∈ F be a linear parametric formula with parameters params.

1. The procedure solveUNSAT is correct for F . That is, if ι �= ∅ then ι is an
assignment for parameters that will make φ unsatisfiable.

2. The procedure solveUNSAT is complete for F . That is, if ι = ∅ then there does
not exist an assignment for params that will make φ unsatisfiable.

3. The procedure solveUNSAT terminates.

The correctness of procedure solveUNSAT is obvious as the procedure returns a
model ι iff ι makes the formula φ unsatisfiable. The algorithm terminates since,
in every iteration of the solveUNSAT algorithm, at least one satisfiable disjunct
of elimFunctions(d) is made unsatisfiable, where d is a disjunct of φ. The number
of disjuncts that can be falsified by the solveUNSAT procedure is bounded by
O(2n

2

), where n is the number of atoms in φ. Note that, in practice, our tool
explores a very small fraction of the disjuncts (see section 4). The proof of
completeness of the procedure is detailed in [20]. An important property that
ensures completeness is that the operation elimFunctions is applied only on a
satisfiable disjunct d. This guarantees that the predicates in d involving ADT
variables do not have any inconsistencies. Since the parameters can only influence
the values of numerical variables, axioms that check for inconsistencies among
the ADT predicates can be omitted.

Theorem 1 implies that the procedure we described in the previous sections
for solving parametric VCs, in the presence of recursive functions, ADTs and
arithmetic operations, that iteratively unrolls the recursive functions in the VC
and applies the solveUNSAT procedure in each iteration is complete when the
recursive functions are sufficiently surjective [27, 28] and when the arithmetic
operations in the VCs are parametric linear operations over reals.
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3.3 Solving Nonlinear Parametric Formulas

Nonlinearity is common in resource bounds. In this section, we discuss our ap-
proach for handling nonlinear parametric formulas like φex : wz < xy ∧ x <
w − 1 ∧ y < z − 1 ∧ ax + b ≤ 0 ∧ ay + b ≤ 0 where a, b are parameters. Our
approach is based on axiomatizing the nonlinearity operations. We handle multi-
plication by using axioms such as ∀x, y. xy = (x−1)y+y, ∀x, y. xy = x(y−1)+x
and monotonicity properties like (x ≥ 0 ∧ y ≥ 0 ∧ w ≥ x ∧ z ≥ y) ⇒ xy ≤ wz.
Similarly, we axiomatize exponential functions of the form Cx, where C is a
constant. For example, we use the axiom ∀x. 2x = 2 · 2x−1 together with the
monotonicity axiom for modelling 2x. The axioms are incorporated into the ver-
ification conditions by recursive instantiation as explained below.

Axioms such as xy = (x−1)y+y that are recursively defined are instantiated
similar to unrolling a recursive function during VC refinements. For example, in
each VC refinement, for every atomic predicate r = xy that occurs in the VC,
we add a new predicate r = (x − 1)y + y if it does not exist. We instantiate
a binary axiom, such as monotonicity, on every pair of terms in the VC on
which it is applicable. For instance, if r = f(x), r′ = f(x′) are two atoms
in the VC and if f has a monotonicity axiom, then we conjoin the predicate
(x ≤ x′ ⇒ r ≤ r′) ∧ (x′ ≤ x ⇒ r′ ≤ r) to the VC. This approach can be
extended to N-ary axioms. If the axioms define a Local Theory Extension [16]
(like monotonicity) then the instantiation described above is complete.

Consider the example formula φex shown above. Instantiating the multipli-
cation axioms a few times will produce the following formula (simplified for
brevity): wz < xy ∧ xy = (x − 1)(y − 1) + x + y − 1 ∧ ((x ≥ 0 ∧ y ≥ 0 ∧ x ≤
w ∧ y ≤ z) → xy ≤ wz) ∧ x < w − 1 ∧ y < z − 1 ∧ ax + b ≤ 0 ∧ ay + b ≤ 0.
This formula can be solved without interpreting multiplication. a = −1, b = 0 is
a solution for the parameters.

3.4 Finding Strongest Bounds

For computing strongest bounds, we assume that every parameter in the tem-
plate appears as a coefficient of some expression. We approximate the rate of
growth of an expression in the template by counting the number of function
invocations (including nonlinear operations) performed by the expression. We
order the parameters in the descending order of the estimated rate of growth
of the associated expression, breaking ties arbitrarily. Let this order be �. For
instance, given a template res≤a∗f(g(x,f(y))+c∗g(x)+a∗x +b, we order the param-
eters as a � c � b. We define an order ≤∗ on Params �→ R by extending ≤
lexicographically with respect to the ordering �. We find a locally minimum
solution ιmin for the parameters with respect to ≤∗ as explained below.

Let ι be the solution found by the solveUNSAT procedure. ι is obtained by
solving a set of nonlinear constraints C. We compute a minimum satisfying
assignment ιmin for C with respect to the total order ≤∗ by performing a binary
search on the solution space of C starting with the initial upper bound given by
ι. We stop the binary search when, for each parameter p, the difference between
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the values of p in the upper and lower bounds we found is ≤ 1. We need to
bound the difference between the upper and lower bounds since the parameters
in our case are reals. ιmin may not falsify φ although ι does. This is because C
only encodes the constraints for falsifying the disjuncts of φ explored until some
iteration. We use ιmin as the next candidate model and continue the iterations
of the solveUNSAT algorithm.

In general, the inferred bounds are not guaranteed to be the strongest as the
verification conditions we generate are sufficient but not necessary conditions.
However, it would be the strongest solution if the functions in the program are
sufficiently surjective [27, 28], if there are no nonlinear operations and there is
no loss of completeness due to applying Farkas’ Lemma on integer formulas. Our
system also supports finding a concrete counter-example, if one exists, for the
values smaller than those that are inferred.

3.5 Inference of Auxiliary Templates

We implemented a simple strategy for inferring invariant templates automati-
cally for some functions. For every function f for which a template has not been
provided, we assume a default template that is a linear combination of integer
valued arguments and return values of f . For instance, for a function size(l) we
assume a template a∗res+b≤0 (where, res is the return value of size). This enables
us to infer and use correctness invariants like size(l)≥0 automatically.

3.6 Analysis Strategies

Inter-Procedural Analysis. We solve the resource bound templates for the
functions modularly in a bottom-up fashion. We solve the resource bound tem-
plates of the callees independent of the callers, minimize the solution to find
strong bounds and use the bounds while analysing the callers. The auxiliary
templates that we infer automatically are solved in the context of the callers in
order to find context-specific invariants.

Targeted Unrolling. Recall that we unroll the functions in a VC if the VC
is not solvable by solveUNSAT (i.e, when the condition at line 19 is true). As an
optimization we make the unrolling process more demand-driven by unrolling
only those functions encountered in the disjuncts explored by the solveUNSAT

procedure. This avoids unrolling of functions along disjuncts that are already
unsatisfiable in the VC.

Prioritizing Disjunct Exploration. Typically, the VCs we generate have a
large number of disjuncts some of which are easier to reduce to false compared
to others. We bias the implementation to pick the easier disjuncts by using
timeouts on the nonlinear constraints solving process. Whenever we timeout
while solving a nonlinear constraint, we block the disjunct that produced the
nonlinear constraint in the VC so that it is not chosen again. In our experiments,
we used a timeout of 20s. This strategy, though conceptually simple, made the
analysis converge faster on many benchmarks.
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4 Empirical Evaluation

We have implemented our algorithm on top of the Leon verifier for Scala [5],
building on the release from the GitHub repository. We evaluate our tool on
a set of benchmarks shown in Fig. 6 written in a purely functional subset of
Scala programming language. The experiments were performed on a machine
with 8 core, 3.5 GHz, intel i7 processor, having 16GB RAM, running Ubuntu
operating system. For solving the SMT constraints generated by tool we use the
Z3 solver of [10], version 4.3. The Benchmarks used in the evaluation comprises
of approximately 1.5K lines of functional Scala code with 130 functions and 80
templates. All templates for execution bounds specified in the benchmarks were
precise bounds. Fig. 6 shows the lines of codes loc, number of procedures P and a
sample template for running time bound that was specified, for the benchmarks.

Benchmark loc P Sample template used in benchmark

List Operations (list) 60 8 a∗(size(l)∗size(l))+b
Binary search tree (bst) 91 8

addAll a∗(lsize(l)∗(height(t)+lsize(l)))+b∗lsize(l)+c
removeAll a∗(lsize(l)∗height(t))+b∗lsize(l)+c

Doubly ended queue (deq) 86 14 a∗qsize(q)+b
Prop. logic transforms (prop) 63 5 a∗size(formula)+b
Binary Trie (trie) 119 6 a∗inpsize(inp)+c
qsort, isort, mergesort (sort) 123 12 a∗(size(l)∗size(l))+b
Loop transformations (loop) 102 10 a∗size(program)+b
Concatenate variations (cvar) 40 5

strategy 1 a∗((n∗m)∗m)+c∗(n∗m)+d∗n+e∗m+f
strategy 2 a∗(n∗m)+b∗n+c∗m+d

Leftist heap (lheap) 81 10
merge a∗rheight(h1)+b∗rheight(h2)+c
removeMax a∗leftRightheight(h) + b

Redblack tree (rbt) 109 11 a∗blackheight(t)+b
AVL tree (avl) 190 15 a∗height(t)+b
Binomial heap (bheap) 204 12

merge a∗treenum(h1)+b∗treenum(h2)+c
deleteMin a∗treenum(h1)+b∗minchildren(h2)+c

Speed benchmarks(speed) 107 8 a∗((k+1)∗(len(sb1)+len(sb2)))+b∗size(str1)+c
Fold operations (fold) 88 7

listfold, treefold a∗(k∗k)+b, a∗size(t)+b

Fig. 6. Benchmarks used in the evaluation comprising of approx. 1.5K lines of scala
code, 130 functions and 80 templates. P denotes the number of procedures.

The benchmark list implements a set of list manipulation operations like
append, reverse, remove, find and distinct–that removes duplicates. bst imple-
ments a binary search tree with operations like insert, remove, find, addall and
removeall. The function lsize(l) (used in the templates) is the size of the list of el-
ements to be inserted/removed from the tree. deq is an amortized, doubly-ended
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queue with enqueue, dequeue, pop and concat operations. prop is a set of propo-
sitional logic transformations like converting a formula to negation normal form
and simplifying a formula. lheap is a leftist heap data-structure implementation
with merge, insert and removemax operations. This benchmark also specified a

logarithmic bound on the right height : 2rheight(h)≤a∗heapSize(h) + b which was
solved by the tool. The function leftRightheight (used in the template) computes
the right height of the left child of a heap.

trie is a binary prefix tree with operations: insert–that inserts a sequence of in-
put bits into the tree, find, create –that creates a new tree from an input sequence
and delete–that deletes a sequence of input bits from the tree. The benchmark
cvars compares two different strategies for sequence concatenation. One strat-
egy exhibits cubic behavior on a sequence of concatenation operations (templates
shown in Fig. 6) and the other exhibits a quadratic behavior. rbt is an implemen-
tation of red-black tree with insert and find operations. This benchmark also

specified a logarithmic bound on the black height: 2blackheight(h)≤a∗treeSize(h)+b

which was solved by the tool.
avl is an implementation of AVL tree with insert, delete and find operations.

bheap implements a binomial heap with merge, insert and deletemin operations.
The functions treenum and minchildren (used in templates), compute the number
of trees in a binomial heap and the number of children of the tree containing
the minimum element, respectively. speed is a functional translation of the code
snippets presented in figures 1,2, 9 of [14], and the code snippets on which it
was mentioned that the tool failed (Page 138 in [14]). The benchmark fold is a
collection of fold operations over trees and lists. These were mainly included for
evaluation of depth bounds.

Fig. 7 shows the results of running our tool on the benchmarks. The column
bound shows the time bound inferred by the tool for the sample template shown
in Fig. 6. This may provide some insights into the constants that were inferred.
The bounds inferred are inductive. Though the constants inferred could poten-
tially be rationals, in many cases, the SMT solver returned integer values. In case
a value returned by the solver for a parameter is rational, we heuristically check
if the ceil of the value also yields an inductive bound. This heuristic allowed us
to compute integer values for almost all templates.

The column time shows the total time taken for analysing a benchmark. In
parentheses we show the time the tool spent in minimizing the bounds after
finding a valid initial bound. The subsequent columns provide more insights into
the algorithm. The column VC size shows the average size of the VCs generated
by the benchmarks averaged over all refinements. The tool performed 11 to 42
VC refinements on the benchmarks. The column disj. shows the total number of
disjuncts falsified by the tool and the column NL size shows the average size of
the nonlinear constraints solved in each iteration of the solveUNSAT procedure.

Our tool was able to solve 78 out of 80 templates. Two templates were not
solvable because of the incompleteness in the handling of nonlinearity. The re-
sults also show that our tool was able to keep the average size of the generated
nonlinear constraints small in each iteration in spite of the large VC sizes, which
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Sample bound inferred time avg.VC disj. NL
time≤ (min.time) size size

list 9∗(size(l)∗size(l))+2 17.7s (8.7s) 1539.7 108 59.9

bst 8∗(lsize(l)∗(height(t)+lsize(l))) 31s (14.2s) 637.4 79 84
+2∗lsize(l)+1

29∗(lsize(l)∗height(t))+7∗lsize(l)+1

deq 9∗qsize(q)+26 17.3s (8.6s) 405.7 80 27.9

prop 52∗size(formula)−20 19.5s (1.2s) 1398.5 59 38.1

trie 42∗inpsize(inp)+3 3.3s (0.5s) 356.8 54 23.5

sort † 8∗(size(l)∗size(l))+2 6.8s (1.6s) 274.9 85 29.6

loop 16∗size(program)−10 10.6s (4.9s) 1133.8 44 52.4

cvar 5∗((n∗m)∗m)−(n∗m)+0∗n+8∗m+2 25.2s (14.7s) 1423.2 61 49.4
9∗(n∗m)+8∗m+0∗n+2

lheap 22∗rheight(h1)+22∗rheight(h2)+1 166.7s (144s) 1970.5s 152 106.4
44∗leftRightheight(h)+5

rbt 178∗blackheight(t)+96 124.5s (18.8s) 3881.2 149 132.6

avl 145∗height(t)+19 412.1s (259.1s) 1731.8 216 114

bheap 31∗treenum(h1)+38∗treenum(h2)+1 469.1s (427.1s) 2835.5 136 157.2
70∗treenum(h1)+31∗minchildren(h2)+22

speed 39∗((k+1)∗(len(sb1)+len(sb2))) 28.6s (6.4s) 1084.9 111 85.8
+18∗size(str1)+34

fold 12∗(k∗k)+2 8.5s (0.8s) 331.8 44 23
12∗size(t)+1

Fig. 7. Results of running our tool on the benchmarks. † the tool failed on 2 templates
in the sort benchmark.

is very important since even the state-of-the-art nonlinear constraint solvers do
not scale well to large nonlinear constraints.

Fig. 8 shows the results of applying our tool to solve templates for depth
bounds for our benchmarks. All the templates used were precise. The tool was
able to solve all 80 templates provided in the benchmarks. In Fig. 8, the bench-
marks which have asymptotically smaller depth compared to their execution time
(work) are starred. Notice that the constants involved in the depth bounds are
much smaller for every benchmark compared to its work, even if the depth is not
asymptotically smaller than work. Notice that the tool is able to establish that
the depth of mergesort is linear in the size of its input; the depth of negation
normal form transformation is proportional to the nesting depth of its input
formula and also that the depth of fold operations on trees is linear in the height
of the tree.

Comparison with CEGIS. We compared our tool with Counter Example
Guided Inductive Synthesis(CEGIS) [26] which, to our knowledge, is the only ex-
isting approach that can be used to find values for parameters that would falsify
a parametric formula containing ADTs, uninterpreted functions and nonlinear
operations. CEGIS is an iterative algorithm that, given a parametric formula φ
with parameters param and variables X , makes progress by finding a solution
for param that rules out at least one assignment for X that was feasible in the
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Inferred depth bound: depth≤ time

list 5∗(size(l)∗size(l))+1 9.7s

bst 4∗(lsize(l)∗(height(t)+lsize(l)))+2∗lsize(l)+1 335.8s
4∗(lsize(l)∗height(t))+4∗lsize(l)+1

deq 3∗qsize(q)+13 106.4s

prop* 5∗nestingDepth(formula)−2 31.4s

trie 8∗inpsize(inp)+1 4.1s

msort* 45∗size(l)+1 20.2s
qsort 7∗(size(l)∗size(l))+5∗size(l)+1 164.5s
isort 5∗(size(l)∗size(l))+1 3s

loop 7∗size(program)−3 404s

cvar 3∗((n∗m)∗m)− 1
8
∗(n∗m)+n+5∗m+1 270.8s

3∗(n∗m)+3∗n+4∗m+1

lheap 7∗rheight(h1)+7∗rheight(h1)+1 42s
14∗leftRightheight(h)+3

rbt 22∗height(t)+19 115.3s

avl 51∗height(t)+4 185.3s

bheap 7∗treenum(h1)+7∗treenum(h2)+2 232.5s
22∗treenum(h1)+7∗minchildren(h2)+16

speed 6∗((k+1)∗(len(sb1)+len(sb2)))+5∗size(str1)+6 41.8s

fold* 6∗k+1 3.1s
5∗height(tree)+1

Fig. 8. Results of inferring bounds on depths of benchmarks

earlier iterations. In contrast to our approach which is guaranteed to terminate,
CEGIS may diverge if the possible values for X is infinite. We actually imple-
mented CEGIS and evaluated it on our benchmarks. CEGIS diverges even on the
simplest of our benchmarks. It follows an infinite ascending chain along which
the parameter corresponding to the constant term of the template increases in-
definitely. We also evaluated CEGIS by bounding the values of the parameters
to be ≤ 200. In this case, CEGIS worked on 5 small benchmarks (viz. list, bst,
deq, trie and fold) but timed out on the rest after 30min. For the benchmarks
on which it worked, it was 2.5 times to 64 times slower than our approach.

5 Related Work

We are not aware of any existing approach that can handle the class of templates
and programs that our approach handled in the experimental evaluation.

Template-Based Invariant Inference. The work of [8] is possibly closest
to ours because it performs template-based analysis of imperative programs for
finding heap bounds and handles program paths incrementally using the idea of
path invariants from [4]. [8] infers only linear bounds. It handles data-structures
using a separate shape analysis that tracks the heap sizes. Our approach is
for functional programs. We handle a wide range of recursive functions over
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ADTs and are not restricted to size. We integrate the handling of ADTs into
the template solving process, which allows us to solve precise templates. We
support nonlinearity and are capable of computing strongest bounds. We are
able to handle complex data-structure implementations such as Binomial Heap.
[3] presents an approach for handling uninterpreted functions in templates. We
handle disjunctions that arise because of axiomatizing uninterpreted functions
efficiently through our incremental algorithm that is driven by counter-examples
and are able to scale to VCs with hundreds of uninterpreted functions. Our
approach also supports algebraic data types and handles sophisticated templates
that involve user-defined functions. The idea of using Farkas’ lemma to solve
linear templates of numerical programs goes back at least to the work of [7] and
has been generalized in different directions by [25], [9], [15]. [9] and [25] present
systematic approaches for solving nonlinear templates for numerical programs.
Our approach is currently based on light-weight axiomatization of nonlinear
operations which is targeted towards practical efficiency. It remains to be seen if
we can integrate more complete non-linear reasoning into our approach without
sacrificing scalability.

Symbolic Resource Bounds Analyses. [14] (SPEED) presents a technique
for inferring symbolic bounds on loops of C programs that is based on instru-
menting programs with counters, inferring linear invariants on counters and
combining the linear invariants to establish a loop bound. This approach is
orthogonal to ours where we attempt to find solutions to user-defined templates.
In our benchmarks, we included a few code snippets on which it was mentioned
that their tool did not work. Our approach was able to handle them when the
templates were provided manually. Our approach is also extensible to other re-
source bounds such as depth. The COSTA system of [1] can solve recurrence
equations and infer nonlinear time bounds, however, it does not appear to sup-
port algebraic data types nor user-defined functions within resource bounds.

Other Related Works. Counterexample-guided refinement ideas are ubiqui-
tous in verification, as well as in software synthesis, where they are used in
counterexample-guided inductive synthesis (CEGIS) algorithms by [26], [13],
and [18]. One important difference in approaches such as ours is that an in-
finite family of counterexamples is eliminated at once. Our experimental results
of comparison with CEGIS in section 4 indicates that these approaches may suf-
fer from similar divergence issues particularly for the resource bound inference
problem. Recent work [2] provides a general framework and system for inferring
invariants, which can also handle ∃∀ problems of the form we are considering.
The comparison of two approaches requires further work because our target are
contracts with function invocations whereas [2] targets temporal logic formulas.
The underlying HSF tool [11] has been shown applicable to a wide range of
analysis problems. HSF could simplify the building of a resource analyzer such
as ours, though it does not support algebraic data types and resource bound
computation out of the box.
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