
Modular Heap Analysis for Higher-Order Programs

Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani

Microsoft Research, India
{t-rakand,grama,kapilv}@microsoft.com

Abstract. We consider the problem of computing summaries for procedures that
soundly capture the effect of calling a procedure on program state that includes
a mutable heap. Such summaries are the basis for a compositional program anal-
ysis and key to scalability. Higher order procedures contain callbacks (indirect
calls to procedures specified by callers). The use of such callbacks and higher-
order features are becoming increasingly widespread and commonplace even in
mainstream imperative languages such as C� and Java. Such callbacks compli-
cate compositional analysis and the construction of procedure summaries. We
present an abstract-interpretation based approach to computing summaries (of a
procedure’s effect on a mutable heap) in the presence of callbacks in a simple
imperative language. We present an empirical evaluation of our approach.

1 Introduction

In this paper, we present a compositional approach to heap analysis for an imperative
language with dynamic memory allocation and higher order functions (or callbacks).
Modular/compositional program analysis [1] is a key technique for scaling static analy-
sis to large programs. Our interest is in techniques to compute a summary for each pro-
cedure that approximates its relational semantics (relating input states to output states).
A significant benefit of this approach is that libraries can be analyzed once and the com-
puted library summaries reused for any program that uses the library. This is particularly
significant since modern applications rely on large libraries and frameworks.

A typical approach to computing procedure summaries is to first construct a call-
graph and then analyze procedures in the call-graph in a bottom-up fashion. Any col-
lection of mutually recursive procedures is iteratively analysed until their summaries
reach a fixed point. This approach is feasible when the call-graph can be constructed
easily and precisely, e.g., for languages with only direct calls. However, most modern
languages permit indirect calls (virtual methods, delegates, etc.), which pose several
challenges. Determining the targets of indirect calls (which depend on runtime values)
is itself a complex analysis, and depends upon the results of heap analysis. One possi-
bility is to integrate heap analysis and the call-graph construction into a single analysis.
However, the direct way of doing this gives up on modularity and resorts to a top-down
whole-program analysis. An alternative is to use a less precise call-graph construction
technique that does not require heap analysis: e.g., type-based techniques such as Class
Hierarchy Analysis (CHA). This approach too suffers from several drawbacks.

(a) A library procedure may call back a procedure defined by a client of the library.
This means that a conservative call-graph cannot be constructed for a library independent

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 370–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modular Heap Analysis for Higher-Order Programs 371

of its client. Hence, the library cannot be analyzed independent of its client. Thus, we
are again forced to resort to a whole-program analysis of each application separately.

(b) A conventional call-graph is necessarily context-insensitive. it identifies the pos-
sible targets of an indirect call in a procedure, but the targets actually called may vary
with calling contexts. A modular analysis, based on such a call-graph, will compute a
procedure summary that is context-insensitive (in terms of precision).

(c) A type-based call-graph can be very imprecise. Assuming that a delegate call, in
C�, can invoke any delegate (essentially a lambda expression) defined in the program
can be disastrous. The imprecision of type-based resolution also leads to significant
scalability problems, especially with common methods such as equals or hashcode
and common interfaces such as iterators.

Our Approach. Computing summaries describing heap effects is challenging even in
the absence of indirect calls, as the summary must capture the effects of a procedure
on the heap, without making assumptions about the aliasing in the input heap. Previ-
ously, we had presented an abstract-interpretation approach to computing such first-
order heap-effect summaries (based on prior work by Whaley, Salcianu, and Rinard)
[11,8,4]. In this paper, we extend this approach to deal with callbacks and higher-
order procedures modularly, by constructing higher-order heap-effect summaries. The
intuition behind our approach is informally described in Section 2.

The key and first step is to formulate a compositional concrete semantics for a lan-
guage with higher order procedures in a form suitable for abstraction, as shown in
Section 3. We then mimic the same structure to define an abstract semantics for proce-
dures and libraries (Sections 4 and 5), which serves as the basis for our analysis, which
can be applied to a library independent of its client(s).

We have implemented our analysis for C� and evaluated it on a collection of large
applications (Section 6). We find that indirect method calls are a widely used feature
of modern languages. We also find that call graphs based on our approach are signifi-
cantly more precise and compact compared to conventional class hierarchy analysis. As
a result, our heap analysis is able to scale to larger applications.

The ideas behind our approach are similar to those used in analyses presented by
Vivien et al. [10] and Lattner et al. [3]. However, neither of these analyses has a theo-
retical formulation or a correctness proof. We believe that these two seemingly different
analyses can be seen as instances of our abstract interpretation formulation. A compar-
ison of our work with these analyses and other related work appears in Section 7.

2 An Informal Overview

We now present an informal overview of how we extend our previous approach [4] to
handle higher-order procedures. The previous approach computes a shape-graph like
summary for first-order procedures that can be concretized as a transformer of concrete
heap graphs. We refer to these representations as transformer graphs. Let τ range over
such transformer graphs. We present a formal definition of transformer graphs later, as
the intuition behind the extension to higher-order procedures does not depend on this.

Representing Higher-Order Summaries. The basic idea is to extend the summary rep-
resentation to capture information about callbacks that can occur, delaying instantiating

372 R. Madhavan, G. Ramalingam, and K. Vaswani

(a) (b) (c)

Fig. 1. Informal interpretation of summary

the effects of the callback until sufficient context information is available to determine
the actual procedure(s) that are called, using first-order summaries (i.e., transformer
graphs) to represent code-fragments that are free of unresolved (indirect) calls.

Consider a procedure whose body is of the form S1;S2;S3, where S1 and S3 are
free of unresolved calls, and S2 consists of a single unresolved call. In this case, we can
compute graph transformers τ1 and τ3 that are abstractions of S1 and S3 respectively,
and utilize a symbolic summary of the form τ1;S2; τ3 for the procedure. While this is
basic idea behind our approach, we refine this idea in several ways.

Exploiting Local Context. Though we don’t know the exact side-effects of the indirect
call in S2, we can restrict the scope of these side-effects: the call can affect only the part
of the heap reachable via the call parameters and global variables. This observation lets
us decompose τ3 into two parts: τ �3 , concerning locations that cannot be modified by
the call in S2, and τg3 , concerning locations that could be modified by the call. We can
then write the summary as τ1;S2; τ

�
3 ; τ

g
3 , which simplifies to τ1 ◦ τ �3 ;S2; τ

g
3 . Note that

the composition “τ1 ◦ τ �3” can be computed once, even before the target of the indirect
call is determined, simplifying the summary.

A Flow-Insensitive Abstraction. In general, when the procedure contains many un-
resolved calls, this approach will lead to a summary representation that looks like a
control-flow-graph where every vertex (other than entry/exit vertices) represents a call-
statement, and every edge is annotated with a transformer graph. For efficiency reasons,
we utilize a more aggressive, but less precise, flow-insensitive abstraction that uses a
single graph transformer τ (instead of one per edge) and a set of call-statements w
(thus forgetting the control-flow between call-statements). For our previous example,
this produces a summary (τ, {S2}), where τ conservatively approximates both τ1 ◦ τ �3
and τg3 . Informally, a summary (τ, {c}) can be interpreted as the control-flow-graph
shown in Fig. 1(a). Since the transformers τ we use are isotonic (i.e., τ is a sound
approximation of the identity relation), this interpretation can be simplified to the one
shown in Fig. 1(b), which is the basis for our subsequent formalization. A summary
(τ, { c1, · · · , ck }) is interpreted as shown in Fig. 1(c).

Computing Higher Order Summaries. We present an algorithm that constructs the
desired transformer τ using a Sharir-Pnueli style interprocedural analysis. We present
details of this analysis later, but list some of the key components of the analysis here.

Modular Heap Analysis for Higher-Order Programs 373

Intraprocedural Analysis. We present an abstract semantics for primitive statements
that maps an input summary (τ, ω) to an output summary (τ ′, ω′).

Direct and Indirect Calls. The abstract semantics of a direct call statement is defined
using a composition operator that combines an input summary (τr , ωr) and the called
procedure’s summary (τe, ωe) into an output summary, after accounting for parameter
passing. Initially, an indirect call c is handled in a straightforward fashion, by updating
the input summary to include c as an unresolved call. However, as the analysis proceeds,
sufficient context information may become available to resolve indirect calls: e.g., when
a procedure summary containing an unresolved call is instantiated at a particular call-
site. Our analysis identifies indirect calls whose targets can be resolved. If a resolved
target’s summary is available, then it is instantiated. This is an iterative process, as
instantiating a resolved target’s summary may create further opportunities for resolving
more indirect calls.

Eliminating Indirect Calls. Completely resolving an indirect call can be a multi-stage
process. At intermediate stages, we might be able to identify some of the potential tar-
gets of an indirect call, but cannot be sure whether all possible targets of the indirect call
have been identified. Eventually, sufficient context information may become available
to let us determine that all possible targets of the indirect call have been identified. At
this point, the indirect call can be dropped from the summary.

3 The Language and Its Concrete Semantics

Syntax. A library (LP,LL) consists of a set of procedures LP and a set of nested libraries
LL (denoting libraries it is linked with). A procedure P consists of a name (belonging to
the set Procs) and a control-flow graph, with an entry vertex entry(P) and an exit vertex
exit(P). The entry vertex has no predecessor and the exit vertex has no successor. Every
edge of the control-flow graph is labelled by a primitive statement. The set of primitive

statements are shown in Fig. 2. We use u
S→ v to indicate an edge in the control-flow

graph from vertex u to vertex v labelled by statement S. In the sequel, we abuse notation
and do not distinguish between a procedure and its name, e.g. if P is a procedure then P

also denotes its name.
We use “function pointers” as the primitive for indirect calls. The statement “x = &P”

assigns the address of procedure P to variablex, and the indirect call “(∗x)(a1, · · · , ak)”
calls the procedure pointed to by x. This is sufficient to model common indirect call
mechanisms such as virtual functions and delegates. A closure c can be realized as a
pair consisting of a function pointer c.f and a data pointer c.d, and the call to c mod-
elled as “(∗(c.f))(c.d)”.

Concrete Semantics Domain. Let Vars denote a set of identifiers used as variable
names, partitioned into the following disjoint sets: the set of global variables Globals ,
the set of local variables Locals (assumed to be the same for every procedure), and
the set of formal parameter variables Params (assumed to be the same for every pro-
cedure). Let Fields denote a set of identifiers used as field names. We use a simple
language with only two primitive types: pointers to heap objects and function-pointers.

374 R. Madhavan, G. Ramalingam, and K. Vaswani

We use a graph-based representation for the concrete state. We use a level of indirec-
tion in representing function-pointer variables: the variable stores a procedure-id (iden-
tifying a procedure), and a separate table maps the procedure-id to its semantic value
(as formalized below). We use procedure-ids, instead of procedure names, to ensure
uniqueness of ids, for reasons explained soon.

Let Nc be an unbounded set of heap locations. Let PVc be an unbounded set of
values, disjoint from Nc, used as procedure-ids. A concrete (points-to) graph g ∈ Gc

is a triple (V,E, σ), where V ⊆ Nc ∪ PVc represents the set of objects in the heap,
E ⊆ (V ∩ Nc) × Fields × V represents values of pointer fields in heap objects, and
σ ∈ Σc = Vars 	→ V represents the values of program variables. Nc includes a special
element null . Variables and fields of new objects are initialized to null .

Let Fc = Gc 	→ 2Gc be the set of functions that map a concrete graph to a set
of concrete graphs. An element of Fc may also be thought of as a (binary) relation
on concrete graphs. The semantics of statements (and procedures), in the absence of
indirect calls, can be described using elements of Fc.

We now enrich the domain to support indirect procedure calls. We define two do-
mains Pc and Tc recursively as follows: Tc = PVc ↪→ Pc and Pc = Gc × Tc →i

2Gc×Tc . An element of Tc is a partial function, binding procedure-ids to their seman-
tics. (We may think of this as a simple “virtual-function table”.) The concrete state is
enriched by such a table. A procedure uses such a table to dispatch indirect calls (in-
cluding callbacks). But the procedure may also update the table (e.g., if it returns a
procedure-value). However, the procedure can only add new entries to the table, but not
modify pre-existing entries. The construct →i includes only such functions. A function
f in Gc × Tc → 2Gc×Tc is defined to be in Gc × Tc →i 2

Gc×Tc iff: (g′, t′) ∈ f(g, t)
implies ∀n ∈ dom(t).t′(n) = t(n). The domain Pc generalizes Fc and is used to give
semantics to higher-order statements and procedures. We define Lc to be Procs ↪→ Pc.

We define a partial order �c on Fc as: fa �c fb iff ∀g ∈ Gc.fa(g) ⊆ fb(g). Let
�c denote the corresponding least upper bound (join) operation defined by: fa �c fb =
λg.fa(g) ∪ fb(g). For any f ∈ Fc, we define f̂ : 2Gc 	→ 2Gc by: f̂(G) = ∪g∈Gf(g).

We define the relational composition of two elements in Fc as: fa ◦ fb = λg.f̂b(fa(g)).
We extend these operators to the domain Pc, Tc and Lc following the structure of their
recursive definitions. E.g, �c is extended as follows: for any p1, p2 ∈ Pc, p1 �c p2 iff
(g′, t′) ∈ p1(g, t) ⇒ ∃(g′′, t′′) ∈ p2(g, t) s.t. g′ = g′′, t′ �c t

′′ where t1 �c t2 iff ∀n ∈
dom(t1), t1(n) �c t2(n). For any l1, l2 ∈ Lc, l1 �c l2 iff ∀P ∈ dom(l1), l1(P) �c

l2(P).

Concrete Semantics. A primitive statement S has a semantics [[S]]c ∈ Pc, as shown
in Fig. 2. The semantics of call statements and the semantics of the procedures and
libraries that contain them are mutually interdependent. Hence, we parameterize the
semantics of call statements with a parameter AP, defined as follows. Let (LP, LL)
be a library consisting of a set of procedures LP and a set of nested libraries LL. Let
LLP denote the set of all procedures in LL. A direct call in the library can only reference
procedures defined in LP or in LL. The semantics of (LP, LL) is defined as the least fixed
point of a collection of equations (defined below) which contains a variableϕP for every
procedure P in LP. Define the partial function AP as follows: AP maps every P ∈ LP to
variable ϕP, and it maps every P ∈ LLP to its semantics [[P]]c. For simplicity, we assume

Modular Heap Analysis for Higher-Order Programs 375

Statement S Concrete semantics [[S]]c ((V,E, σ), t)

v1 = v2 { ((V,E, σ[v1 �→ σ(v2)]), t) }
v = new C { ((V ∪ {n}, E ∪ {n} × Fields × {null}, σ[v �→ n]), t) | n ∈ Nc \ V }
v1.f = v2 { ((V, {〈u, l, v〉 ∈ E | u �= σ(v1) ∨ l �= f} ∪ {〈σ(v1), f, σ(v2)〉}, σ), t) }
v1 = v2.f { ((V,E, σ[v1 �→ n]), t) | 〈σ(v2), f, n〉 ∈ E }
v = &P if P ∈ dom(AP)

then { ((V,E, σ[v �→ n]), t[n �→ AP(P)]) | n �∈ dom(t) }
else {}

P(v1, · · · , vk) if P ∈ dom(AP) then CallS(AP(P)) else {}
(∗v)(v1, · · · , vk) if σ(v) ∈ dom(t) then CallS(t(σ(v)))) else {}

Fig. 2. Statements in our language and their concrete semantics

that procedure names are unique across LP and LL. We can eliminate this assumption
by using unique qualified names for procedures. However, the semantics presented is
valid for all clients, including those that may reuse procedure names used in LP or
LL. To avoid name-capture when control flows back and forth between a client and the
library via callbacks, we identify procedures using unique ids generated at runtime, as
illustrated by the semantics of the statement “v = &P”. These unique ids are used as
indices into the “virtual function table” t.

A direct call to procedure P or taking the address of procedure P is valid only if
P ∈ dom(AP). In this case, the semantics of the statement is defined in terms of AP(P).
An indirect call, however, may reference other procedures, e.g., such as those defined by
clients of the libraries. The run-time parameter t is used to resolve indirect calls. Given
f ∈ Pc, CallS(f) is essentially the same as f , but accounts for parameter passing and
pushing/popping activation records and is defined in the Appendix.

Semantics of Procedures. We now define the concrete summary semantics [[P]]c ∈ Pc

for every procedure P in LP using the following equations, in the style of Sharir-Pnueli.
For every procedure P in LP, we introduce a new variable ϕu for every vertex in the
control-flow graph (of P) and a new variable ϕu,v for every edge u → v in the control-
flow graph. We also introduce a variable ϕP. The semantics is defined as the least fixed
point of the following set of equations. The value of ϕu in the least fixed point is a
function that maps any concrete state (g, t) to the set of concrete states that arise at
program point u when the procedure containing u is executed with an initial state (g, t).
Similarly, ϕu,v captures the states after the execution of the statement labelling edge
u → v.

ϕv = λ(g, t). {(g, t)} v is an entry vertex (1)

ϕv =
⊔

c{ϕu,v | u → v} v is not an entry vertex (2)

ϕu,v = ϕu ◦ [[S]]c where u
S→ v (3)

ϕP = ϕexit(P) (4)

We define [[P]]c to be the value of ϕP in the least fixed point of equations (1)-(4).

376 R. Madhavan, G. Ramalingam, and K. Vaswani

Semantics of Libraries. (Note that an application or program is just a special case of a
library.) The semantics of a library is captured by an element of Lc, that maps (the name
of) every procedure in the library to its semantics: [[(LP, LL)]]c = { (P, [[P]]c) | P ∈ LP }.

4 Abstract Domains and Concretization

We now formally present an abstract interpretation that analyzes a library (LP, LL)
and computes a sound approximation of its concrete semantics presented earlier. Our
algorithm first analyzes all the libraries in LL, uses these results to analyze and compute
a summary for every procedure in LP. The algorithm can also be used to analyze an
application (whole program) or a single method in isolation, which are just special
cases of a library.

The Abstract Graph Domain. We utilize an abstract (points-to) graph to represent a
set of concrete graphs. Our formulation is parameterized by a set Na, the universal set
of all abstract graph nodes, and a set PVa, the set of abstract procedure-ids. An abstract
graph g ∈ Ga is a triple (V,E, σ), where V ⊆ Na ∪ PVa represents the set of abstract
heap objects, E ⊆ (V ∩ Na) × Fields × V represents possible values of pointer fields
in the abstract heap objects, and σ ∈ Vars 	→ 2V is a map representing the possible
values of program variables. Given a concrete graph g1 = 〈V1,E1, σ1〉 and an abstract
graph g2 = 〈V2,E2, σ2〉 we say that a function h : V1 	→ V2 is an embedding of g1 into
g2, denoted g1 �h g2, iff:

〈x, f, y〉 ∈ E1 ⇒ 〈h(x), f, h(y)〉 ∈ E2, ∀v ∈ Vars . { h(σ1(v)) } ⊆ σ2(v)

The concretization γG(ga) of an abstract graph ga is defined to be the set of all concrete
graphs that can be embedded into ga: γG(ga) = {gc ∈ Gc | ∃h.gc �h ga}

The Transformer Graph Domain. A transformer graph τ [4] is a graph-based repre-
sentation that can be used to abstract the relational semantics of a first-order procedure
or code fragment. It is based on weak-updates to the heap. Hence, given any input graph,
a transformer graph identifies a set of heap objects that may be added to the input graph,
and a set of points-to edges that may be added to the input graph.

The set Fa of transformer graphs is defined as follows. An element τ ∈ Fa is a tuple
(EV,EE, π, IV, IE, σ) where, EV ⊆ Na is the set of external vertices, IV ⊆ Na ∪PVa is
the set of internal vertices, EE ⊆ V × Fields × EV is the set of external edges, where
V = EV ∪ IV, IE ⊆ V × Fields × V is the set of internal edges, π ∈ Vars 	→ 2V

is a map representing the possible values of program variables in the initial state and
σ ∈ Vars 	→ 2V is a map representing the possible values of program variables in
the final state. Internal nodes and edges are used to represent new nodes and points-to
edges to be added to the input graph. External nodes and external edges are used to
create symbolic access-paths evaluated against an input graph to determine the sources
and targets of edges to be added. More generally, an external node in the transformer
graph acts as a proxy for a set of vertices in the final output graph, which may include
nodes that exist in the input graph as well as new nodes added to the input graph.

Modular Heap Analysis for Higher-Order Programs 377

Formally, let τ be (EV,EE, π, IV, IE, σ) and gc ∈ Gc be (Vc,Ec, σc). To apply τ to
gc, we first compute a mapping η : EV∪ IV 	→ (IV∪Vc), as illustrated in the Appendix.
(See [4] for more details.) We define the resulting output graph τ〈gc〉 to be (V′,E′, σ′)
where V′ = Vc∪ IV, E′ = Ec∪{〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE, v1 ∈ η(u), v2 ∈ η(v)}, and
σ′ = λx.η̂(σ(x)). (Note that the output graph contains concrete and abstract vertices,
but can be considered an abstract graph for suitably defined Na and PVa.) We define
the concretization function γT : Fa → Fc as follows: γT (τ) = λgc. γG(τ〈gc〉).

Define a partial order �co on Fa as follows: τ1 �co τ2 iff EV1 ⊆ EV2, EE1 ⊆ EE2,
IV1 ⊆ IV2, π1 � π2, IE1 ⊆ IE2 and σ1 � σ2, where � for π and σ is defined as
pointwise inclusion: σ1 � σ2 iff ∀x.σ1(x) ⊆ σ2(x).

Higher Order Summaries. As explained earlier, we represent abstract higher order
summaries as pairs (τ, ω) consisting of a transformer graph τ and a set of (indirect)
call-statements ω. Formally, let CallStmt = Vars×Vars∗ denote the set of all indirect
call-statements. We define the abstract summary domain Pa = Fa × 2CallStmt . We
extend �co to Pa as follows: (τ1, ω1) �co (τ2, ω2) iff τ1 �co τ2 and ω1 ⊆ ω2. We
define La to be the set Procs ↪→ Pa (of partial functions from Procs to Pa).

As explained above, a first-order procedure can be summarized using a transformer
graph. Now consider a procedure that has no indirect calls, but has statements of the
form “x = &P”. A transformer graph τ is sufficient, in this case, to capture the proce-
dure’s effect on the graph component of state. However, the procedure’s effect also in-
cludes updates to the function-table component of the state. In our approach, this effect
is captured by the entire library summary (an element of La), which also summarizes
the effects of procedures (such as “P” above). Thus, the complete meaning of τ (in this
case) can be captured only in the context of a library summary La ∈ La. The function
γM : Fa × La → Pc formalizes this below. The semantics of a higher-order summary
(τ, ω) ∈ Pa is, in turn, formalized by γH : Pa × La 	→ Pc, as this too is dependent
on the entire library summary. Finally, the semantics of a library summary La ∈ La is
formalized by a function γ : La 	→ Lc. These functions are mutually recursive.

Given f ∈ Pc, we define f i inductively as f0 = λt.λg.{g} and f i+1 = f i ◦ f . We
define f∗ to be �c{f i | i ≥ 0}. We define γM, γH, γ as below.

γM (τ, La) = λ(gc, tc).{ (g′c, t
′
c) | ∃h.gc �h τ〈gc〉∧

t′c = tc � { (n, γ(La)(h(n))) | h(n) ∈ dom(La) }}

γH ((τ, ω), La) = γM(τ, La) ◦ (
⊔

c

({[[S]]c ◦ γM(τ, La) | S ∈ ω}))
∗

γ (La) = { (P, γH(La(P), La)) | P ∈ dom(La) }

The definition of γ(La) is straight forward: it maps every procedure P in the library La to
the concretization of its abstract summary given by La(P). The function γH((τ, ω), La)
interprets (τ, ω) as a control flow graph, as shown in Figure 1, and computes the con-
crete state transformer in Pc at the exit point of the control flow graph (via a fix-point
computation) where, the transfer functions for the edges labelled by τ are given by
γM(τ, La) and the transfer functions for the edges labelled by the call statements are
given by their concrete semantics defined in Figure 2. γM(τ, La) is defined as the func-
tion in Pc that maps a concrete state (gc, tc) to the set of all concrete states that are

378 R. Madhavan, G. Ramalingam, and K. Vaswani

compatible with the abstract graph τ〈gc〉 and the abstract library La. A concrete state
(g′c, t

′
c) is compatible with an abstract graph, abstract library pair (ga, La) iff g′c �h ga

and every entry (n, f) in the virtual function table t′c either belongs to the input table tc
or f is the concrete image of the abstract summary of the procedure h(n). (γM(τ, La)
assumes that the abstract procedure ids PVa are procedure names Procs .)

5 Abstract Semantics

Let (LP, LL) be a library, consisting of a set of procedures LP and a set of other li-
braries LL it links to. Let LLP denote the set of all procedures in LL. Assume that
we have analyzed LL and computed summaries for every procedure in LLP. The ab-
stract semantics of (LP, LL) is captured by an element of La as follows: [[(LP, LL)]]a =
{ (P, [[P]]a) | P ∈ LP }, where, [[P]]a is the value of the variable ϑP in the least fix point of
the collection of abstract semantic equations defined shortly. Define function Ls ∈ La

with domain LP ∪ LLP as follows: Ls maps every P ∈ LP to variable ϑP, and it maps
every P ∈ LLP to its pre-computed summary.

Node Abstraction. First, we fix the set Na and PVa. Recall that the domain Fa defined
earlier is parameterized by these sets. We utilize an allocation-site based merging strat-
egy for bounding the size of the transformer graphs. We utilize the labels attached to
statements as allocation-site identifiers. Let Labels denote the set of statement labels in
the given program. We define Na to be {nx | x ∈ Labels ∪ Params ∪ Globals}. We
define PVa to be the set Procs of procedure names.

The Sharir-Pnueli Equations. For every procedure P ∈ LP, we define the following
set of equations, approximating the concrete semantics equations 1-3. We introduce a
variable ϑu for every vertex u in the control-flow graph of P, and a variable ϑu,v for
every edge u → v in the control-flow graph.

ϑv = (ID, ∅) v is an entry vertex (5)

ϑv = �co{ϑu,v | u S→ v} v is not an entry vertex (6)

ϑu,v = [[S]]a(ϑu) where u
S→ v (7)

ϑP = simplify Ls ϑexit(P) (8)

Here, ID is a transformer graph consisting of a external vertex for each global
variable and each parameter (representing the identity function). Formally, ID =
(EV, ∅, π, ∅, ∅, π), where EV = {nx | x ∈ Params ∪ Globals} and π = λv. v ∈
Params ∪Globals → {nv} | v ∈ Locals → {null}.
These equations are straightforward, as they leave the abstraction work to the abstract
semantics of statements, explained below. The summary for the procedure, ϑP, is ob-
tained by simplifying the abstract value ϑexit(P) associated with the exit vertex of the
procedure as explained later.

Primitive Statements. The abstract semantics [[S]]a of primitive statements other than
call-statements is shown in Fig. 3. Given a set-valued function f : A 	→ B and a ∈
A, b ∈ B, we use f [a ↪→ b] to denote a weak update of a i.e, f [a ↪→ b] = f [a 	→

Modular Heap Analysis for Higher-Order Programs 379

[[v1 = v2]]a(τ, ω) = (τ [σ �→ σ[v1 ↪→ σ(v2)]]), ω)
[[l : v = new C]]a(τ, ω) = ((EV,EE, π, IV ∪ {nl}, IE ∪ {nl × Fields × {null}}, σ[v ↪→ nl]), ω)
[[v1.f = v2]]a(τ, ω) = (τ [IE �→ IE ∪ {(σ(v1) \ PVa)× {f} × σ(v2)}], ω)
[[l : v1 = v2.f]]a(τ, ω) = let A = {n | ∃n1 ∈ σ(v2), 〈n1 , f ,n〉 ∈ IE} in

let X = (σ(v2) \ PVa) in
let B = X ∩ Escaping(τ) in
if (B = ∅) then (τ [σ �→ σ[v1 ↪→ A]], ω)
else
((EV ∪ {nl},EE ∪B × {f} × {nl}, π, IV, IE, σ[v1 ↪→ A ∪ {nl}]), ω)

[[v = &P]]a(τ, ω) = (τ [σ �→ σ[v1 ↪→ {P}]], ω)

Fig. 3. Abstract semantics of primitive statements, where τ = (EV,EE, π, IV, IE, σ)

Call�S((τr, ωr), (τe, ωe)) = (pop�
S(τe〈〈push�

S(τr)〉〉a, τr), ωr ∪ ωe)

[[P(v1, · · · , vk)]]a(τ, ω) = Call�S((τ, ω), Ls(P))
MarkParam(τ,X) = τ [π �→ λx.if x ∈ X then π(x) ∪ σ(x) else π(x)]
[[(∗v)(v1, .., vk)]]a(τ, ω) = (MarkParam(τ, { v1, .., vk } ∪Globals), ω ∪ {(∗v)(v1, .., vk)})

Fig. 4. Abstract semantics of calls

f(a)∪b]. Given τ = (EV,EE, π, IV, IE, σ1), let τ [σ 	→ σ2] denote (EV,EE, π, IV, IE, σ2)
and we use a similar notation for updating other components of τ . The set Escaping(τ)
used in the semantics of l : v1 = v2 .f is defined as {x | ∃w ∈ range(π). x is reachable
from w via EE ∪ IE edges }. Our abstract semantics closely resembles the one used in
[4], with one difference. Unlike in the earlier analysis, we perform weak updates on
all the variables (to conservatively over-approximate the transformers of all the code
segments between the indirect calls). In our implementation, we minimize the precision
loss due to weak updates via variable renaming.

Call Statements. Fig. 4 presents the abstract semantics of call statements. The abstract
semantics of a direct call statement utilizes the function Ls defined earlier, which maps
every P ∈ LP to variable ϑP, and every P ∈ LLP to its pre-computed summary. The op-
eration Call �(,) composes the graph transformer τr before the call-site with the graph
transformer τe of the callee’s summary, to find the resultant graph transformer. The ω
component is obtained simply by taking the union of the set of indirect calls in the caller
and callee. We use operations push�

S and pop�
S as abstractions of the parameter passing

mechanism and pushing/popping an activation record. These operations, defined in the
Appendix, are straightforward, except for one point: pop�

S updates local variables of
the caller weakly, defining their value as the join of their original value (in the caller)
and their final value (in the callee). This is done so that variables referred to in indi-
rect call-sites from the callee’s summary that are added to the caller can be interpreted
soundly.

The definition of 〈〈〉〉 is analogous to the definition of the 〈〉 operator used to define
the concretization function. While τ〈g〉 models relation application (it returns a rep-
resentation of all graphs related to g by τ), τ1〈〈τ2〉〉a models relation composition. A
formal definition of this operation appears in the appendix. When a callee’s summary is
instantiated at a call-site as above, we may be able to resolve some of the indirect calls

380 R. Madhavan, G. Ramalingam, and K. Vaswani

in the callee (i.e., determine the actual targets of these calls). The procedure simplify is
used to perform such resolution and simplify the result, as explained later.

The semantics of indirect call statements is mostly straightforward: the statement is
simply added to the list of unresolved calls. However, the transformer graph is updated
as indicated by function MarkParam . Recall that we wish to construct a transformer
graph that simultaneously approximates multiple code fragments, each starting/ending
at an indirect-call, entry vertex, or exit vertex. The code fragment starting after the given
indirect call may be thought of as having parameters { v1, · · · , vk } ∪ Globals : these
are the roots of part of the caller’s heap that is accessible to and may be modified by the
callee. Hence, nodes pointed to by these variables are marked as parameter nodes.

(a) (b)

Fig. 5. Resolving an indirect call

Resolving Indirect Calls. We
now describe how a summary is
simplified when an indirect call
is resolved. Consider the sce-
nario shown in Fig. 5(a). Let
(τ1, {(∗x)(· · ·)}) be a summary
computed during the analysis.
Suppose the possible values of
x includes a procedure P (i.e.,
P ∈ στ1(x)). Then, the indi-
rect call in the summary may in-
voke P. Let (τ2, {(∗y)(· · ·)}) be
the summary of P (either a pre-

computed summary or a partially-computed summary if P is part of the analysis scope).
Fig. 5(a) shows the combined control-flow graph we get from the two summaries. The
goal of the resolution process is to simplify, via abstraction, this control-flow graph to
one in normal form, as shown in Fig. 5(b). A couple of points are worth noting about
the summary shown in Fig. 5(b). Firstly, the original indirect call instruction (∗x)(· · ·)
is still present in the summary. This cannot be dropped until all possible targets of x
have been determined and instantiated (as detailed later). Secondly, the indirect calls
(∗x)(· · ·) and (∗y)(· · ·) are treated as if they are indirect calls of the summarized
method. In reality, the second is an indirect call in a target of the first.

The above procedure can be generalized to the case of summaries with multiple in-
direct calls. In general, instantiating a summary can trigger further summary instantia-
tions: e.g., sufficient context information may become available to resolve other indirect
calls. Hence, the resolution process is an iterative one of identifying indirect calls that
can be resolved and then instantiating summaries of identified targets. The operation
inline : La 	→ (Pa 	→ Pa) that realizes this iterative procedure is defined in Fig. 6.

The function inlineCall (in Fig. 6) performs the inlining operation for a single
indirect call as illustrated in Fig. 5, which involves a fix-point computation. Notice
the cycle in the control flow graph in Fig. 5(a) passing though the edges labelled
τ1 and τ2, the transformer graph τ shown in Fig. 5(b) is the fixed point of this cy-
cle; inlineCall computes this fixed point. The functions inlineOnce (and inlineCalls)
extend the inlineCall operation to a set of indirect calls by applying it sequentially
on every resolvable call in the input summary. (An indirect call is resolvable if its

Modular Heap Analysis for Higher-Order Programs 381

lfp f v = if (f v) = v then v else lfp f (f v)

inlineCall ((τe, ωe), S) (τr, ωr) =

let τ1 = Call�S((τr, ωr), (τe, ωe)) in

let τ2 = τr〈〈τ1〉〉a in

let τ3 = lfp (λf.f〈〈f〉〉a) τ2 in

(τ3〈〈τr〉〉a, ωr ∪ ωe)

inlineCalls Σ ψ =

{
ψ ifΣ = {}
inlineCalls Σ′ (inlineCall x ψ) ifΣ = {x} �Σ′

inlineOnce La (τ, ω) =

let Σ = {(La (P), c) | c ∈ ω ∧ c = (∗v)(v1 , · · · , vk) ∧ P ∈ σ(v) ∩ dom(La)} in

inlineCalls Σ (τ, ω)

inline La ψ = lfp (λψ′. inlineOnce La ψ
′) ψ

Fig. 6. Definition of inline

target variable points to (abstract) procedure ids.) However, applying inlineOnce func-
tion may result in more resolvable indirect calls. Moreover, the summaries inlined by
inlineOnce could be mutually inter-dependent (if the procedures they correspond to are
mutually recursive in the context of the input summary). Both these cases are uniformly
handled by the inline function which repeatedly applies the inlineOnce operation until
a fixed point.

Eliminating Calls. Once all targets of an indirect call (∗x)(· · ·) have been identified
and their summaries instantiated, the call can be omitted from the summary. Trans-
former graphs use external nodes to represent unresolved values: e.g., input parameters.
If x does not point to any external node, then all possible values of x are known. How-
ever, the converse is not true: even if x points to an external node, all possible values of
x may already have been determined, as illustrated by the example in Fig. 7.

R () {
r = new T(); r.f = &P;
x = new T(); x.f = &Q;
while(*) {
t1 = r.f; (*t1)(x);
t2 = x.f; (*t2)(r);

} }

Fig. 7. Example program

The indirect calls in lines 4 and 5 can potentially call pro-
cedures P and Q. However, these indirect calls could also po-
tentially update the values of x.f or r.f , thus changing the
procedures that are called in subsequent executions of these
statements. The transformer graphs correctly account for this
possibility by creating external nodes (that represent the up-
dated values of x.f and r.f after these indirect calls). How-
ever, assume that procedures P and Q do not update the values

of x.f and r.f . Once the summaries of P and Q are instantiated in the summary of R,
we can determine that no new values are possible for t1 and t2, even though they point
to external nodes, and that all possible targets of these indirect calls have been instan-
tiated. We can, hence, eliminate these indirect calls from the summary. The algorithm
in Fig. 8 iteratively identifies potentially unresolved calls and eliminates the other calls.
This elimination creates opportunities to identify and eliminate useless external nodes.
Due to space constraints, we do not describe how this is done.

382 R. Madhavan, G. Ramalingam, and K. Vaswani

dropResolvedCalls ((EV,EE, π, IV, IE, σ), ω) =

let reach(X) = {y | ∃x ∈ X . y is reachable from x via. IE ∪ EE edges }
let einit = reach(∪{ π(x) | x ∈ Params ∪ Globals })
let em ((∗x)(a1 , . . . , ak)) = reach(π(a1)) ∪ . . . ∪ reach(π(ak))

let unresolved = lfp (λX .{(∗x)(a1 , . . . , ak) ∈ ω | (σ(x) ∩ EV) ∈ êm(X) ∪ einit}) ∅
((EV,EE, π, IV, IE, σ), unresolved)

simplify La ψ = dropResolvedCalls(inline La ψ)

Fig. 8. The Simplification Procedure

Other Optimizations and Details. Our analysis computes the fixed point of a (large)
collection of equations generated from a given library. Similar to a conventional modu-
lar analysis, we analyze each procedure one at a time. Typically, in a modular analysis,
the dependences between the equations can be identified statically and guide the or-
der in which equations are processed for fixed point computation (which generally is a
bottom-up or reverse topological order of the call-graph). Indirect calls, however, mean
that some of the dependences can only be identified during the course of the analysis
making it impossible to devise an optimal order of processing. We use a combination
of an initial approximate call-graph constructed using class hierarchy analysis and call-
graph edges identified dynamically during our analysis to guide the order in which pro-
cedures are iteratively analyzed. We also exploit an optimization to identify and merge
equivalent call statements: (∗a0)(a1, · · · , ak) and (∗b0)(b1, · · · , bk) are equivalent if
the abstract values of ai and bi are the same for every i. Finally, at the exit point of
each method (after the simplify operation) we remove the internal/external vertices not
reachable from Params ,Globals and the arguments of unresolved indirect calls from
the method summary (analogous to garbage collection). We omit details of several other
optimizations due to space constraints.

Correctness. We say that a concrete value Lc ∈ Lc is correctly represented by an
abstract value La ∈ La, denoted Lc ∼ La, iff Lc �c γ(La), and similarly for the other
domains as well.

Theorem 1. [[(LP, LL)]]c ∼ [[(LP, LL)]]a.

6 Experimental Evaluation

We have implemented a flow-insensitive version of our analysis for C� using the Mi-
crosoft Phoenix framework. Our implementation, referred to as SEAL (for Side-Effects
Analysis), is available at http://www.rise4fun.com/seal. SEAL is reasonably well tested,
with over 50 testcases, many using higher-order features of C� such as delegates and
LINQ. However, SEAL does not currently handle reflection and concurrency.

Fig. 9 shows the benchmarks used in our empirical evaluation along with their source
code sizes. All benchmarks except System.Core which is a part of the .NET framework,
are popular open source libraries from http://www.codeplex.com. We analysed each
benchmark using the pre-computed summaries for parts of the .NET framework, namely,

Modular Heap Analysis for Higher-Order Programs 383

Benchmark LOC Methods Pure Cond. Impure Impure Time
Pure & incomp

DocX (dx) 10K 612 285 89 61 177 1m17s
Facebook APIs (fb) 21K 4112 1886 91 1336 799 1m59s
Dynamic Data Display (ddd) 25K 2266 1285 334 258 389 3m58s
TestApis (test) 25K 1080 503 205 189 183 2m50s
Newtonsoft Json (json) 27K 1867 675 532 234 426 27m34s
Quickgraph (qg) 34K 3380 1703 653 628 396 1m50s
NRefactory (nr) 43K 3004 998 1036 262 708 21m49s
CUL (cul) 56K 3963 1519 1275 855 314 5m13s
PdfSharp (pdf) 96K 3883 1405 344 1031 1103 9m53s
DotSpatial (ds) 250K 11579 4656 2718 1737 2468 1h51m2s
System.core (sys) unknown 3092 1190 752 445 705 11m28s

Fig. 9. Results of running SEAL on 11 benchmark programs. On all the benchmarks, SEAL used
at most 4GB of memory.

mscorlib, system and system.core DLLs. Unlike a typical whole-program analysis that
would (re) analyse the .NET DLLs while analysing every benchmark, SEAL analyses
the .NET DLLs once and reuses their summaries during the subsequent analyses. Fur-
thermore, DotSpatial consists of 7 inter-dependent DLLs which were analysed one at a
time in a modular fashion (the numbers presented are the aggregate of all the DLLs).

Except in the case of a few commonly used methods (like System.Array mem-
bers) for which we used manually written stubs, we treated calls to methods for which
code was unavailable (such as native, GUI and database libraries) heuristically . Hence,
our analysis could be unsound in the presence of such calls.

Performance and Purity Classification. SEAL classifies every method into 4 cate-
gories. A pure method does not have any externally visible side-effects and does not
have any unresolved calls. A conditionally pure method has no side-effects but has one
or more unresolved calls and hence its purity depends on the calling-context. An impure
method has side-effects but has no unresolved calls. An impure & incomplete method
has side-effects and unresolved calls.

Fig. 9 shows the results of running SEAL on our benchmarks on a 2.83 GHz, 4
core, Intel Xeon server running Windows Server 2008. We observe that SEAL scales
to large, real world C� libraries with thousands of methods within reasonable time and
memory overhead. Also observe that there exists a significant number of procedures
whose purity and side-effects depends on unresolved calls, highlighting the need for a
sound and precise treatment of call-backs.

Fig. 10 presents statistics that provide interesting insights into the analysis. The first
column in Fig. 10 shows the average number of unresolved calls in the summary of
a method, i.e., the size of the ω component of the summaries (the absolute deviation,
i.e., the average of differences of the each of the values from mean is shown within
parenthesis). It can be seen that, across all benchmarks, SEAL finds at least 2 unresolved
calls per method on an average. In fact, many methods have many more unresolved
calls, as indicated by the large absolute deviation. (up to 7 unresolved calls per method
on average in json and sys).

384 R. Madhavan, G. Ramalingam, and K. Vaswani

Bench- Unresolved Completely Non-escaping
mark calls resolved calls internal nodes
dx 4.05 (5.42) 7% (10%) 33% (36%)
fb 2.55 (4.07) 6% (10%) 9% (15%)
ddd 2.10 (3.22) 1% (2%) 30% (37%)
test 2.52 (3.61) 5% (9%) 27% (34%)
json 7.32 (10.61) 6% (9%) 31% (35%)
qg 2.06 (3.13) 1% (3%) 10% (17%)
nr 4.04 (5.04) 1% (2%) 24% (32%)
cul 2.14 (2.84) 6% (11%) 19% (28%)
pdf 3.50 (5.13) 2% (3%) 37% (34%)
sys 6.87 (10.42) 4% (7%) 41% (35%)
ds 5.93 (8.77) 3% (5%) 10% (11%)

Fig. 10. Prevalence of unresolved calls and util-
ity of dropResolvedCalls / garbage collection

The second column of Fig. 10 shows
the average percentage of indirect calls in
unsimplified method summaries that are
classified as completely resolved (and re-
moved) by simplify . The third column
shows the average percentage of inter-
nal nodes allocated by a method (and
its callees) that are non-escaping. This
shows that in spite of unresolved calls,
the analysis is able to identify a signifi-
cant percentage (25% on average) of lo-
cally allocated objects as non-escaping
and eliminate them from the summaries.

A Comparison with CHA Callgraph
Based Modular Analysis. We now com-

pare SEAL with an alternative call-graph-based compositional heap analysis, which we
refer to as CCC. CCC works by first constructing a call-graph using Class Hierarchy
Analysis (CHA). It then processes procedures in bottom-up order over this call-graph,
using our first-order compositional heap analysis technique [4].

Our implementation of CCC is unsound for reasons explained below. However, our
intention is solely to use the reported numbers as an upper bound for precision and
lower bound for analysis time for a sound version of CCC. Our CCC implementation
constructs the call-graph of libraries independent of the application (or client), which is
potentially unsound due to callbacks. We exclude DotSpatial from this experiment due
to the complications in constructing a reasonably sound call-graph spanning multiple
DLLs. We found that conservatively modelling calls to virtual methods like equals and
hashCode (defined in the root class Object) as dispatching to any of their overridden
implementations doesn’t scale to even a 10 line program within reasonable time limits
when the referenced libraries are also included. For this reason, CCC heuristically (and
unsoundly) treats calls to such top-level interface methods (as having no side-effect).
(In contrast, SEAL does not resort to any such heuristics.)

The results in Fig. 11 show that CCC is dramatically slower than SEAL. The table
includes statistics about the call-graphs in the two cases which suggest that the perfor-
mance difference is likely due to the imprecision of the CCC call-graph. The SEAL call-
graph is a bit different from a conventional static call-graph, as it includes some (but
not all) transitive caller-callee relationships because of the way it inlines summaries.
However, these numbers capture (in both cases) the dependences that exist between
the summaries of different procedures. These numbers indicates that decoupling call-
graph construction from the heap analysis leads to over-estimating these dependences
and larger SCCs, which make the analysis slower and make a case for integrating the
call-graph construction with the heap analysis, as we do in a compositional fashion.

Modular Heap Analysis for Higher-Order Programs 385

SEAL CCC CCC call-graph SEAL call-graph
Time Time #Edges #SCCs Avg SCC Max SCC #Edges #SCCs Avg SCC Max SCC

Size Size Size Size
dx 1m17s 12m52s 684 0 NA NA 1273 0 NA NA
fb 1m59s 23m13s 4052 3 3.33 4 4090 1 2 2
ddd 3m58s ∞ 9105 6 18.17 99 3666 1 2 2
test 2m50s 16m7s 2532 13 5 25 1891 7 4 7
json 27m34s ∞ 10701 18 28.06 450 13033 8 4.63 12
qg 1m50s ∞ 296982 11 66.73 658 3416 1 2 2
nr 21m49s ∞ 20763 14 79.43 911 10976 10 14.4 55
cul 5m13s 2h34m12s 34231 11 35.82 354 4740 3 2.67 3
pdf 9m53s 23m31s 7339 21 3.62 19 14434 6 2.33 3
sys 11m28s 3h44m55s 56712 10 58.30 508 7292 11 8.45 45

Fig. 11. Comparison of SEAL and CCC. ∞ indicates timeout after 4 hours.

7 Related Work

This paper extends our previous work [4,5] on compositional heap analysis for first-
order procedures. The problem of resolving indirect calls has attracted a lot of attention,
ranging from various call-graph construction algorithms for object-oriented languages
to control-flow analysis algorithms for functional languages, e.g., see [9,2,6]. Many
of these algorithms, however, take a top-down, whole-program, analysis approach. In
contrast, we have focused on a compositional, bottom-up, approach that can be used to
compute summaries for libraries that can be reused for any client of the library.

Rountev et al. [7] present a framework for modular analysis of libraries in the pres-
ence of call-backs by extending Sharir and Pnueli’s functional approach. For procedures
containing indirect calls (directly or transitively), their approach constructs a simplified
control flow graph as a (higher-order) summary, by simplifying paths that contain only
direct calls to procedures that have a first-order summary to an edge labelled by its
transformer. This is similar to the starting point of our approach, but we push this ap-
proach further. We show how to inline a higher-order summary at a call-site, simplify
the resulting summary, resolve indirect calls when possible, and integrate a heap analy-
sis within this approach. (E.g., they rely on other, separate, analyses to identify targets
of indirect calls when a library’s summary is instantiated in the context of a client.)

Vivien et al. [10] present an approach for analyzing an arbitrary set of procedures in
a complete program. Their approach permits the summary computed for a procedure to
be incrementally refined using the summaries of callees when they become available.
However, this approach does not handle indirect calls, and assumes that a call-graph
is available. In contrast, we deal with indirect calls and callbacks, and construct a call-
graph during the analysis in a compositional fashion. Furthermore, the approach doesn’t
have a theoretical formalization or proof of correctness. We believe that our abstract
interpretation formalization can be easily adapted to express Vivien et al.’s approach.

Lattner et al. [3] present a modular unification-based pointer analysis for C pro-
grams in the presence of function pointers. Our approach shares several elements with
the Lattner et al. approach, most notably combining a (first-order) transformer with

386 R. Madhavan, G. Ramalingam, and K. Vaswani

a set of unresolved calls into a summary, but we use a more precise (non-unification)
pointer analysis. [3] does not simplify summaries as aggressively as we do, does not ex-
plain identification/elimination of completely resolved calls, does not have an abstract
interpretation formulation and is quite complex. We believe that our formalization can
be adapted with minor modifications to formalize Lattner et al. analysis. An interesting
aspect of [3] is the use of a context-sensitive heap abstraction (or heap cloning). Con-
ceptually, it is straight forward to incorporate heap cloning into our analysis by altering
the definition of Na and the abstract semantics of call statements, in fact, our implemen-
tation (SEAL) supports heap cloning. However, it has far reaching implications on the
precision and scalability of the analysis; initial evaluations indicate a dramatic increase
in the sizes of the transformer graphs and the number of unresolved indirect calls. In
the future, we plan to investigate ways of efficiently incorporating heap cloning into our
analysis.

References

1. Cousot, P., Cousot, R.: Modular Static Program Analysis. In: CC 2002. LNCS, vol. 2304, pp.
159–179. Springer, Heidelberg (2002)

2. Grove, D., DeFouw, G., Dean, J., Chambers, C.: Call graph construction in object-oriented
languages. In: OOPSLA, pp. 108–124 (1997)

3. Lattner, C., Lenharth, A., Adve, V.S.: Making context-sensitive points-to analysis with heap
cloning practical for the real world. In: PLDI, pp. 278–289 (2007)

4. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity Analysis: An Abstract Interpretation
Formulation. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 7–24. Springer, Heidelberg
(2011)

5. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity analysis: An abstract interpretation for-
mulation. Tech. rep., Microsoft Research (2011)

6. Might, M., Smaragdakis, Y., Horn, D.V.: Resolving and exploiting the k-cfa paradox: Illu-
minating functional vs. object-oriented program analysis. In: PLDI, Toronto, Canada, pp.
305–315 (June 2010)

7. Rountev, A., Kagan, S., Marlowe, T.: Interprocedural Dataflow Analysis in the Presence of
Large Libraries. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 2–16.
Springer, Heidelberg (2006)

8. Sălcianu, A., Rinard, M.: Purity and Side Effect Analysis for Java Programs. In: Cousot, R.
(ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg (2005)

9. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages or Taming Lambda. Ph.D.
thesis, Carnegie-Mellon Univeristy (May 1991)

10. Vivien, F., Rinard, M.: Incrementalized pointer and escape analysis. In: PLDI, pp. 35–46
(2001)

11. Whaley, J., Rinard, M.C.: Compositional pointer and escape analysis for java programs. In:
OOPSLA, pp. 187–206 (1999)

A Appendix

Definition of CallS . Let S be a procedure call statement with arguments a1,...,ak. Let
Param(i) denote the i-the formal parameter. Define the functions pushS ∈ Σc 	→ Σc ,

Modular Heap Analysis for Higher-Order Programs 387

popS ∈ Σc × Σc 	→ Σc , and CallS as follows:

pushS(σ) = λv. v ∈ Globals → σ(v) | v ∈ Locals → null | v = Param(i) → σ(ai)

popS(σ, σ
′) = λv. v ∈ Globals → σ′(v) | v ∈ Locals ∪ Params → σ(v)

CallS(f) = λ((V,E, σ), t).{ ((V′,E′, popS(σ, σ
′)), t′) |

((V′,E′, σ′), t′) ∈ f ((V,E, pushS(σ)), t) }

Definition of η. Let τ ∈ Fa be (EV,EE, π, IV, IE, σ) and gc ∈ Gc be (Vc,Ec, σc). The
function η used in the definition of τ〈gc〉 is defined as follows. Define a mapping η :
(EV ∪ IV ∪ PVa) 	→ (IV ∪ Vc) that maps every vertex (and procedure ids) in τ to a set
of values, as follows: Let Escaping(τ) = {x | ∃w ∈ range(π). x is reachable from w
via EE ∪ IE edges }.

v ∈ π(x) ⇒ σc(x) ⊆ μ(v)

v ∈ IV ∪ PVa ⇒ v ∈ μ(v)

〈u, f, v〉 ∈ EE, u′ ∈ μ(u), 〈u′, f, v′〉 ∈ Ec ⇒ v′ ∈ μ(v)

〈u, f, v〉 ∈ EE, (μ(u) ∩ μ(u′) \ PVc \ PVa) �= ∅, 〈u′, f, v′〉 ∈ IE,

u ∈ Escaping(τ) ⇒ μ(v′) ⊆ μ(v)

Definition of push�
S and pop�

S . Let S be a direct/indirect call statement with arguments
a1, . . . , an and τ1 = (EV1,EE1, π1, IV1, IE1, σ1), τ2 = (EV2,EE2, π2, IV2, IE2, σ2)

push�
S(τ1) = (EV1,EE1, π1, IV1, IE1, σ

′
1) and pop�

S(τ2, τ1) = (EV2,EE2, π2, IV2, IE2,
σ′
2) where, σ′

1 = λv. (v = Param(i) → σ1(ai) | v ∈ Globals → σ1(v) | v ∈
Locals → null) and σ′

2 = λv. (v ∈ Params ∪ Locals → σ1(v) ∪ σ2(v) | v ∈
Globals → σ2(v))

Definition of Relational Composition Operator 〈〈〉〉. Let τ1 =
(EV1,EE1, π1, IV1, IE1, σ1), τ2 = (EV2,EE2, π2, IV2, IE2, σ2). We define τ2〈〈τ1〉〉a to
be τ2〈〈τ1, ηa〉〉, where ηa is the least solution of the following set of constraints over the
variable μa.

u ∈ π2(p) ⇒ σ1(p) ⊆ μa(u)

u ∈ (IV2 ∪ PVa) ⇒ u ∈ μa(u)

〈u, f, v〉 ∈ EE2, u
′ ∈ μa(u), 〈u′, f, v′〉 ∈ IE1 ⇒ v′ ∈ μa(v)

〈u, f, v〉 ∈ EE2, (μa(u) ∩ μa(u
′) \ PVa) �= {}, 〈u′, f, v′〉 ∈ IE2 ⇒ μa(v

′) ⊆ μa(v)

〈u, f, v〉 ∈ EE2, μa(u) ∩ Escaping(τ2〈〈τ1, μa〉〉) �= {} ⇒ v ∈ μa(v)

Define τ2〈〈τ1, ν〉〉 to be τ ′ = (V′∩(IV1∪IV2),EE
′, π′,V′∩(EV1∪EV2), IE

′, σ′) where,

V′ = (IV1 ∪ EV1) ∪ ν̂(IV2 ∪ EV2)

IE′ = IE1 ∪ {〈v1, f, v2〉 | 〈u, f, v〉 ∈ IE2, v1 ∈ ν(u) \ PVa, v2 ∈ ν(v)}
EE′ = EE1 ∪ {〈u′, f, v〉 | 〈u, f, v〉 ∈ EE2, u

′ ∈ ν(u), u′ ∈ Escaping(τ ′)}
π′ = λvar. π1(var) ∪ ν̂(π2(var))

σ′ = λvar. σ1(var) ∪ ν̂(σ2(var))

	Modular Heap Analysis for Higher-Order Programs
	Introduction
	An Informal Overview
	The Language and Its Concrete Semantics
	Abstract Domains and Concretization
	Abstract Semantics
	Experimental Evaluation
	Related Work
	References

