
Complete Completion using Types and Weights

Tihomir Gvero Viktor Kuncak
Ivan Kuraj

École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland

firstname.lastname@epfl.ch

Ruzica Piskac
Max Planck Institute for Software Systems (MPI-SWS),

Germany
piskac@mpi-sws.org

Abstract
Developing modern software typically involves composing func-
tionality from existing libraries. This task is difficult because li-
braries may expose many methods to the developer. To help de-
velopers in such scenarios, we present a technique that synthesizes
and suggests valid expressions of a given type at a given program
point. As the basis of our technique we use type inhabitation for
lambda calculus terms in long normal form. We introduce a suc-
cinct representation for type judgements that merges types into
equivalence classes to reduce the search space, then reconstructs
any desired number of solutions on demand. Furthermore, we in-
troduce a method to rank solutions based on weights derived from
a corpus of code. We implemented the algorithm and deployed it as
a plugin for the Eclipse IDE for Scala. We show that the techniques
we incorporated greatly increase the effectiveness of the approach.
Our evaluation benchmarks are code examples from programming
practice; we make them available for future comparisons.

Categories and Subject Descriptors I.2.2 [Artificial Intelli-
gence]: Automatic Programming–Program synthesis; D.2.6 [Soft-
ware Engineering]: Coding Tools and Techniques–Program Ed-
itors; D.2.13 [Software Engineering]: Reusable Software–Reuse
Models

General Terms Languages, Algorithms

Keywords program synthesis, type inhabitation, code completion,
type-driven synthesis, ranking

1. Introduction
Libraries are one of the biggest assets for today’s software devel-
opers. Useful libraries often evolve into complex application pro-
gramming interfaces (APIs) with a large number of classes and
methods. It can be difficult for a developer to start using such APIs
productively, even for simple tasks. Existing Integrated Develop-
ment Environments (IDEs) help developers to use APIs by provid-
ing code completion functionality. For example, an IDE can offer
a list of applicable members to a given receiver object, extracted
by finding the declared type of the object. Eclipse [26] and Intel-
liJ [15] recommend methods applicable to an object, and allow the
developer to fill in additional method arguments. Such completion

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $15.00

typically considers one step of computation. IntelliJ can addition-
ally compose simple method sequences to form a type-correct ex-
pression, but requires both the receiver object as well as assistance
from the developer to fill in the arguments. These efforts suggest a
general direction for improving modern IDEs: introduce the ability
to synthesize entire type-correct code fragments and offer them as
suggestions to the developer.

In this paper we describe a tool for automated synthesis of code
snippets. The tool generates and suggests a list of expressions that
have a desired type. One observation behind our work is that, in
addition to the forward-directed completion in existing tools, de-
velopers can benefit from a backward-directed completion. Indeed,
when identifying a computation step, the developer often has the
type of a desired object in mind. We therefore do not require the
developer to indicate a starting value (such as a receiver object)
explicitly. Instead, we follow a more ambitious approach that con-
siders all values in the current scope as the candidate leaf values
of expressions to be synthesized. Our approach therefore requires
fewer inputs than the pioneering work on the Prospector tool [18],
or than the recent work of Perelman et al. [20]. A general idea of our
approach and a first prototype implementation was demonstrated
already in [10].

Finding a code snippet of the given type leads us directly to
the type inhabitation problem: given a desired type T , and a type
environment Γ (a map from identifiers to their types), find an
expression e of this type T . Formally, find e such that Γ ` e : T .
In our deployment, the tool computes Γ from the position of the
cursor in the editor buffer. It similarly looks up T by examining the
declared type appearing left of the cursor in the editor. The goal
of the tool is to find an expression e, and insert it at the current
program point, so that the overall program type checks. When there
are multiple solutions, the tool prompts the developer to select one,
much like in simpler code completion scenarios.

The type inhabitation in the simply typed lambda calculus cor-
responds to provability in propositional intuitionistic logic; it is de-
cidable and PSPACE-complete [24, 28]. We developed a version of
the algorithm that is complete in the lambda calculus sense (up to
αβη-conversion): it is guaranteed to synthesize a lambda expres-
sion of the given type, if such an expression exists. Moreover, if
there are multiple solutions, it can enumerate all of them. If there
are infinitely many solutions, then the algorithm can enumerate any
desired finite prefix of the list of all solutions. Note also that each
synthesized expression is a complete in that method calls have all
of their arguments synthesized. Because of all these aspects of the
algorithm we describe our technique as complete completion.

We present our algorithm using a calculus of succinct types,
which we tailored for efficiently solving type inhabitation queries.
The calculus computes equivalence classes of types that reduce the
search space in goal-directed search, without losing completeness.

Figure 1. InSynth suggesting five highest-ranked well-typed expressions synthesized from declarations visible at a given program point

Moreover, our algorithm generates a representation of all solutions,
from which it can then extract any desired finite subset of solutions.

Given a possibility of an infinite number of type inhabitants,
it is natural to consider the problem of finding the best one. To
solve this problem, we introduce weights to guide the search and
rank the presented solutions. Initially we assign the weight to each
type declaration. Those weights play a crucial role in the algorithm,
since they guide the search and rank the presented solutions. The
weight is defined in a way that a smaller weight indicates a more
desirable formula. To estimate the initial weights of declarations
we leverage 1) the lexical nesting structure, with closer declarations
having lower weight, and 2) implicit statistical information from a
corpus of code, with more frequently occurring declarations having
smaller weight, and thus being preferred. In addition, we used
a corpus of open-source Java and Scala projects as well as the
standard Scala library to collect the usage statistics for the initial
weights of declarations.

We implemented our tool, InSynth, within the Scala Eclipse
plugin. Our experience shows fast response times as well as a
high quality of the offered suggestions, even in the presence of
thousands of candidate API calls. We evaluated InSynth on a set
of 50 benchmarks constructed from examples found on the Web,
written to illustrate API usage, as well as examples from larger
projects. To estimate the interactive nature of InSynth, we measured
the time needed to synthesize the expected snippet. The running
times of InSynth were always a fraction of a second. In the great
majority of cases we found that the expected snippets were returned
among the top dozen solutions.

Furthermore, we evaluated a number of techniques deployed in
our final tool and found that all of them are important for obtaining
good results. We also observed that, even for checking existence
of terms InSynth outperforms recent propositional intuitionistic
provers [9, 19] on our benchmarks. Our overall experience suggests
that InSynth is effective in providing help to developers.

2. Motivating Examples
We illustrate the functionality of InSynth through three exam-
ples. The first example is taken from the online repository of Java
API usage samples http://www.java2s.com/. The second ex-
ample is a real-world fragment of the code base of the Scala IDE
for Eclipse, http://scala-ide.org/, and requires invoking a
higher-order function. For these two examples, the original code
imports only declarations from a few specific classes; to make the
problems more challenging and illustrate the task that a program-
mer faces, we import all declarations from packages where those
classes reside. The third example illustrates that InSynth supports
subtyping.

2.1 Sequence of Streams
In this example the goal is to create a SequenceInputStream object,
which is a concatenation of two streams. Suppose that the developer
has the code shown in the Eclipse editor in Figure 1. If she invokes
InSynth at the program point indicated by the cursor, in a fraction of
a second InSynth displays the ranked list of five expressions. Seeing
the list, the developer can decide that e.g. the second expression in
the list matches their intention, and select it to be inserted into the
editor buffer.

This example illustrates that InSynth only needs the current
program context, and does not require additional information from
the developer. InSynth is able to use both imported values (such as
the constructors in this example) and locally declared ones (such as
body and sig). InSynth supports methods with multiple arguments
and synthesizes expressions for each argument. In this example
InSynth loads over 3000 declarations from the context, including
local and imported values, and finds the expected solution in less
than 250 milliseconds.

The effectiveness of InSynth is characterized by both scalability
to many declarations and the quality of the returned suggestions. In-
Synth ranks the resulting expressions according to the weights and
selects the ones with the lowest weight. The weights of expressions
and types guide the final ranking and also make the search itself
more goal-directed and effective. InSynth derives weights from a
corpus of declarations, assigning lower weight to declarations ap-
pearing more frequently, and therefore favoring their appearance in
the suggested fragments over more exotic declarations.

2.2 TreeFilter: Using Higher-Order Functions
We demonstrate the generation of expressions with higher-order
functions on real code from the Scala IDE project. The example
shows how a developer should properly check if a Scala AST tree
satisfies a given property. In the code, the tree is an argument of the
class TreeWrapper, whereas the property p is an input of the method
filter.

import scala.tools.eclipse.javaelements.
import scala.collection.mutable.
trait TypeTreeTraverser {
val global: tools.nsc.Global
import global.
class TreeWrapper(tree: Tree) {
def filter(p: Tree => Boolean): List[Tree] = {
val ft:FilterTypeTreeTraverser =
ft.traverse(tree)
ft.hits.toList
}
}
}

The property p is a predicate function that takes the tree and
returns true if the tree satisfies it. In order to properly use p inside
filter, the developer first needs to create an object of the type
FilterTypeTreeTraverser. If the developer calls InSynth at the place
, the tool offers several expressions, and the one ranked first turns
out to be precisely the one found in the original code, namely

new FilterTypeTreeTraverser(var1 => p(var1))

The constructor FilterTypeTreeTraverser is a higher-order function
that takes as input another function, in this case p. In this example,
InSynth loads over 4000 initial declarations and finds the snippets
in less than 300 milliseconds.

2.3 Drawing Layout: Using Subtyping
The next example illustrates a situation often encountered when
using java.awt: implementing a getter method that returns a layout
of an object Panel stored in a class Drawing. To implement such a
method, we use code of the following form.

import java.awt.
class Drawing(panel:Panel) {
def getLayout:LayoutManager =
}

Note that handling this example requires support for subtyping,
because the type declarations are given by the following code.

class Panel extends Container with Accessible { ... }
class Container extends Component {
...
def getLayout():LayoutManager = { ... }
}

The Scala compiler has access to the information about all super-
types of all types in a given scope. InSynth supports subtyping and,
in 426 milliseconds, returns a number of solutions among which
the second one is the desired expression panel.getLayout(). While
doing so, it examines 4965 declarations.

For more experience with InSynth, we encourage the reader to
download it from:

http://lara.epfl.ch/w/insynth

The rest of the paper describes a formalization of the problem that
InSynth solves as well as the algorithms we designed to solve it.
We then describe the implementation and the evaluation, provide a
survey of related efforts, and conclude.

3. Type Inhabitation Problem for Succinct Types
To answer whether there exists a code snippet of a given type, our
starting point is the type inhabitation problem. In this section we
establish a connection between type inhabitation and the synthesis
of code snippets.

Let T be a set of types. A type environment Γ is a finite set
{x1 : τ1, . . . , xn : τn} of pairs of the form xi : τi, where xi is a
variable of a type τi ∈ T . We call the pair xi : τi a type declaration.

The type judgment, denoted by Γ ` e : τ , states that from
the environment Γ, we can derive the type declaration e : τ by
applying rules of some calculus. The type inhabitation problem
for a given calculus is defined as follows: given a type τ and a
type environment Γ, does there exist an expression e such that
Γ ` e : τ?

In the sequel we first describe type rules for the standard lambda
calculus restricted to normal-form terms. We denote the corre-
sponding type judgment relation `λ. We then introduce a new suc-
cinct representation of types and terms, with the corresponding type
judgment relation `c.

3.1 Simply Typed Lambda Calculus for Deriving Terms in
Long Normal Form

As background we present relevant rules for the simply typed
lambda calculus, focusing on terms in long normal form. Let B
be a set of basic types. Types are formed according to the following
syntax:

τ ::= τ → τ | v, where v ∈ B
We denote the set of all types as τλ(B).

Let V be a set of typed variables. Typed expressions are con-
structed according to the following syntax:

e ::= x | λx.e | e e, where x ∈ V

Figure 2 shows the type derivation rules used to derive terms
in long normal form. This calculus is slightly more restrictive than

APP

(f : τ1 → . . .→ τn → τ) ∈ Γo
Γo `λ ei :τi, i = 1..n τ ∈ B

Γo `λ fe1 . . . en :τ

ABS
Γo ∪ {x1 :τ1, . . . , xm :τn} `λ e :τ τ ∈ B

Γo `λ λx1 . . . xm.e :τ1 → . . .→ τm → τ

Figure 2. Rules for deriving lambda terms in long normal form

the standard lambda calculus: the APP rule requires that only those
functions present in the original environment Γo can be applied on
terms.

DEFINITION 3.1 (Long Normal Form). A judgement Γo `λ e : τe
is in long normal form if the following holds:

• e ≡ λx1 . . . xm.fe1...en, where m,n ≥ 0
• (f : ρ1 → . . .→ ρn → τ) ∈ Γo, where τ ∈ B
• τe ≡ τ1 → . . .→ τm → τ
• Γ′

o `λ ei : ρi are in long normal form, where
Γ′
o = Γo ∪ {x1 : τ1, . . . , xm : τm}

Note that m can be zero. Then, τe ≡ τ and Definition 3.1 reduces
to the App rule. Otherwise, if M ≡ fe1...en, then M : τ can be
derived by App and λx1 . . . xm.M : τe by Abs rule.

In long normal form a variable f is followed by exactly the same
number of sub-terms as the number of arguments indicated by the
type of f . As an illustration, consider f : τ1 → τ2 → τ3 and
x : τ1. There is no derivation resulting in a judgement Γo `λ fx :
τ2 → τ3 in long normal form, but λy.fxy : τ2 → τ3 has a long
normal form derivation.

When solving the type inhabitation problem it suffices to derive
only terms in long normal form, which restricts the search space.
This does not affect the completeness of search, because each
simply-typed term can be converted to its long normal form [6].

We define the depth D of a term from a long normal form
judgement as follows:
D(λx1 . . . xm.a) = 1
D(λx1 . . . xm.fe1, . . . , en) = max (D(e1), . . . ,D(en)) + 1,
where a and f belong to V .

3.2 Succinct Types
To make the search more efficient we introduce succinct types,
which are types modulo isomorphisms of products and currying,
that is, according to the Curry-Howard correspondence, modulo
commutativity, associativity, and idempotence of the intuitionistic
conjunction.

DEFINITION 3.2 (Succinct Types). Let B be a set containing ba-
sic types. Succinct types ts are constructed according to the gram-
mar:

ts ::= {ts, . . . , ts} → v, where v ∈ B

We denote the set of all succinct types with ts(B), sometimes also
only with ts.

A type declaration f : {t1, . . . , tn} → t is a type declaration
for a function that takes arguments of n different types and returns
a value of type t. The type ∅ → t plays a special role: it is a type
of a function that takes no arguments and returns a value of type t,
i.e. we consider types t and ∅ → t equivalent.

Every type τ ∈ τλ(B) can be converted into a succinct type
in ts(B). With σ : τλ(B)→ts(B) we denote this conversion
function. Every basic type v ∈ B becomes an element of the set of
basic succinct types, and σ(v) = ∅→v. We also denote ∅→v only
with v. Let A (arguments) and R (return type) be two functions
defined on ts(B) as follows:

A({t1, . . . , tn} → v) = {t1, . . . , tn}
R({t1, . . . , tn} → v) = v

Using A and R we define the σ function as follows:

σ(τ1 → τ2) = {σ(τ1)} ∪A(σ(τ2))→ R(σ(τ2))

In particular, for v ∈ B, a type of the form

τ1 → . . .→ τn → v

which often occurs in practice, has the succinct representation

{σ(τ1), . . . , σ(τn)} → v

Given a type environment Γo = {x1 : τ1, . . . , xn : τn} where τi
are types in the simply type lambda calculus, we define

Γ = σ(Γo) = {σ(τ1), . . . , σ(τn)}
It follows immediately that the conversion distributes over unions:

σ(
⋃
i∈I

Γio) =
⋃
i∈I

σ(Γio)

To demonstrate the power of the succinct representation, we
provide the statistics from the example in Figure 1. In this example,
the original type environment with 3356 declarations is reduced to
the compact succinct environment with 1783 succinct types, after
the σ transformation. This drastically reduces the search space later
explored by our main algorithm.

3.3 Succinct Patterns
Succinct patterns have the following structure:

Γ@{t1, . . . , tn} : t

where ti ∈ ts(B), i = 1..n, and t ∈ B.
A pattern Γ@{t1, . . . , tn} : t indicates that types t1, . . . , tn are

inhabited in Γ and an inhabitant of type t can be computed from
them also in Γ. They abstractly represent an application term in
lambda calculus.

Our algorithm for finding all type inhabitants works in two
phases. In the first phase we derive all succinct patterns. They can
be seen as a generalization of terms, because they describe all the
ways in which a term can be computed. In the second phase we do
a term reconstruction based on the original type declarations (Γo)
and the set of succinct patterns.

3.4 Succinct Calculus
Figure 3 describes the calculus for succinct types. Note that the
patterns are derived only in the APP rule. The rule ABS modifies Γ
– it can either reduce Γ or enlarge it, depending on whether we are
doing backward or forward reasoning.

APP
{t1, . . . , tn}→t ∈ Γ Γ `c ti, i = 1..n t ∈ B

Γ `c Γ@{t1, . . . , tn} : t

ABS
Γ ∪ S `c (Γ ∪ S)@π : t t ∈ B

Γ `c S→t

Figure 3. Calculus rules for deriving succinct patterns

Consider the example given at the beginning of this section
and its type environment Γo = {a : Int, f : Int → Int →
Int → String}. From the type environment Γo we compute Γ =
{∅ → Int, {∅ → Int} → String} = {Int, {Int} → String}.
By applying the APP rule on Int, we derive a succinct pattern
Γ@∅ : Int that we add to a set of derived patterns. Having a
pattern for Int we apply the ABS rule. By setting S = ∅, we derive
Γ `c ∅→Int. Finally, by applying again the APP rule, we directly
derive a pattern Γ@{Int} : String, for the String type and store it
into the set of derived patterns.

3.5 Soundness and Completeness of Succinct Calculus
In this section we show that the calculus in Figure 3 is sound
and complete with respect to synthesis of lambda terms in long
normal form. We are interested in generating any desired number
of expressions of a given type without missing any expressions
equivalent up to β reduction. To formulate a completeness that
captures this ability, we introduce two functions, CL and RCN,
shown in Figure 4. These functions describe the terms in long
normal form of a desired type, up to a given depth d. They refer
directly to `c and are therefore not meant as algorithms, but as a
way of expressing the completeness of succinct representation and
as specifications for the algorithms we outline in Section 5.

fun CL(Γ, S→t) = {(Γ ∪ S)@S1 : t | (S1→t) ∈ (Γ ∪ S),
∀t′ ∈ S1.Γ ∪ S `c t′}

fun Select(Γo, t) := {v:τ | v:τ ∈ Γo and σ(τ) = t}
fun RCN(Γo, τ1→· · ·→τn→v, d) :=
if (d = 0) return ∅
else
S→v := σ(τ1→· · ·→τn→v)
Γ := σ(Γo)
Γ′
o := Γo ∪ {x1 : τ1, . . . , xn : τn} //x1, . . . , xn are fresh

TERMS := ∅
foreach ((Γ ∪ S)@{t1, . . . , tm′} : v) ∈ CL(Γ, S→v)
foreach (f : τ) ∈ Select(Γ′

o, {t1, . . . , tm′}→v)
(ρ1→· · ·→ρm→v) := τ
if (m=0) TERMS := TERMS ∪ {λx1 . . . xn.f}
else
foreach i← [1..m]
Ti := RCN(Γ′

o, ρi, d−1)
foreach (e1, . . . , em) ← (T1 × · · · × Tm)

TERMS := TERMS ∪ {λx1 . . . xn.f e1 . . . em}
return TERMS

Figure 4. The function RCN constructs lambda terms in long
normal form up to given depth d, invoking the auxiliary functions
CL and Select.

The CL function in Figure 4 takes as arguments a succinct type
environment Γ and a succinct type S→t. It returns the set of all pat-
terns (Γ ∪ S)@S1 : t that describe the derivation of t. The func-
tion RCN uses the initial environment and the desired type to re-
construct lambda terms. Additionally, RCN takes a non-negative
integer d to limit the reconstruction to terms with depth smaller or
equal to d. It uses type τ1→· · ·→τn→v to extend the environ-

ment and find all patterns that witness inhabitation of v. We ex-
tend the environment with fresh variables x1 : τ1, . . . , xn : τn,
and use CL to find the patterns. Further, we find all declarations f
with a return type v in the extended environment. If f has a func-
tion type ρ1→· · ·→ρm→v, we recursively generate correspond-
ing sub-terms with types ρ1, . . . , ρm. Finally, we use x1, . . . , xn,
f and sub-terms to construct terms in long normal form.

Given the functions CL and RCN we can formalize the com-
pleteness theorem: each judgement in long normal form derived in
the standard lambda calculus can also be derived by reconstruction
using derivations (patterns) of the succinct calculus.

THEOREM 3.3 (Soundness and Completeness). Let Γo be an
original environment, e an lambda expression, τ ∈ τλ(B) and
functions RCN and D defined as above, then:

Γo `λ e : τ ⇔ e ∈ RCN(Γo, τ,D(e))

We provide the proof of Theorem 3.3 in [11].

4. Quantitative Type Inhabitation Problem
When answering the question of the type inhabitation problem,
there might be many terms having the required type τ . A ques-
tion that naturally arises is how to find the “best” term, for some
adequate meaning of “best”. For this purpose we assign a weight to
every term. As in resolution-based theorem proving, a lower weight
indicates a higher relevance of the term. Using weights we extend
the type inhabitation problem to the quantitative type inhabitation
problem – given a type environment Γ, a type τ and a weight func-
tion w, is τ inhabited and if it is, return a term that has the lowest
weight.

Nature of Declaration or Literal Weight
Lambda 1
Local 5
Coercion 10
Class 20
Package 25
Literal 200

Imported 215 + 785
1+f(x)

Table 1. Weights for names appearing in declarations. We found
these values to work well in practice, but the quality of results is
not highly sensitive to the precise values of parameters.

Let w be a function that assigns a weight (a non-negative num-
ber) to each symbol primarily determined by:

1. the proximity to the point at which InSynth is invoked. We as-
sume that the user prefers a code snippet composed from val-
ues and methods defined closer to the program point and assign
the lower weight to the symbols which are declared closer. As
shown in Table 1, we assign the lowest weight to local sym-
bols declared in the same method. We assign a higher weight to
symbols defined in the class where the query is initiated and the
highest weight to symbols that are only in the same package.

2. the frequency with which the symbol appears in the training
data corpus, as described in Section 7.3. For an imported sym-
bol x, we determine its weight using the formula in Table 1.
Here f(x) is the number of occurrences of x in the corpus.

We also assign a low weight to a conversion function that wit-
nesses the subtyping relation, as explained in Section 6. While we
believe that our strategy is fairly reasonable, we arrived at the par-
ticular constants via trial and error, so further improvements are
likely possible.

The function w also assigns a weight to a term such that the
weight of the term λx1 . . . xm.fe1 . . . en is the sum of the weights
of all elements that occur in the expression:

w(λx1 . . . xm.fe1 . . . en) =

m∑
i=1

w(xi) + w(f) +

n∑
i=1

w(ei)

We use the weight of succinct types to guide the algorithm in
Figure 5. Given Select in Figure 4, the weight of a succinct type t
in Γo is defined as:

w(t,Γo) = min({w(f) | (f : τ) ∈ Select(Γo, t)})

5. Synthesis of All Terms in Long Normal Form
In this section we first motivate and introduce the backward search
as the core mechanism of the algorithm, then we illustrate the
algorithm and optimizations we implement in InSynth.

5.1 Backward Search
If we were to apply the rules in Figure 3 in a forward manner
we could have started from any environment in the premise(s).
However, there are infinitely many such environments. Moreover,
rule Abs states that we can split Γ′ in 3|Γ′| possible ways into
two subsets S and Γ, such that Γ′ = Γ ∪ S. However, only
some environments and splittings will lead to the final conclusion
Γinit `c Sinit→tinit, where Γinit and Sinit→tinit are the initial
environment and the desired type, respectively. This means we
would have many unnecessary guesses and computations, leading
to the wrong conclusions.

In contrast, if we use a backward search, then we start from the
conclusion Γinit `c Sinit→tinit in Abs rule, and use a premise
to create a hypothesis that a pattern (Γinit ∪ Sinit)@π : tinit is
derivable. Further, we need to check that it is indeed derivable by
applying App rule. Now, unlike in the forward manner, thanks to
the conclusion in App, we know the exact environment and the type
t of the first premise. Selecting only types in Γ that have return
types t introduce constraints on the other premises as well. The
entire process is applied recursively until the initial hypothesis is
proven or disproved. However, the constraints allow us to narrow
the search. This is the main advantage of the backward search. All
this suggest that the backward search is more efficient, revealing
only the search space reachable from the initial environment and
the desired type, unlike the forward search.

To formalize the backward search we reformulate the earlier
rules by splitting them into the five new rules shown in Figures 6
and 8. One should read and apply the new rules in the forward
manner. In the following subsections we explain those rules in more
detail.

5.2 Main Algorithm
In this section we present an algorithm based on the succinct
ground calculus that we use for finding type inhabitants. This al-
gorithm is further used as an interactive tool for synthesizing ex-
pression suggestions from which a developer can select a suitable
expression. To be applicable, such an algorithm needs to 1) gener-
ate multiple solutions, and 2) rank these solutions to maximize the
chances of returning relevant expressions to the developer.

The algorithm is illustrated in Figure 5. As input Synthesize
takes a desired type τo, and an environment Γo and outputs at most
N terms in long normal form with a type τo. We first transform Γo
and τo by σ into a succinct environment and a type, respectively.
Then we execute the algorithm in three phases. First, Explore takes
the succinct type and the environment as input, and returns the

discovered search space reachable from the desired type and the
initial environment. Next, GenerateP takes the space as input and
outputs a set of patterns. Finally, GenerateT takes patterns, Γo, τo
and the integer N, and produces at most N ranked terms.

The Explore and GenerateP use succinct types to prune the
search space in a light way. They leave only a portion where dec-
laration argument-return types conform. This helps GenerateT to
perform heavy reconstruct only when needed, returning compilable
terms.

fun Synthesize(Γo, τo, N):= {
space := Explore(σ(Γo), σ(τo))
patterns := GenerateP(space)
return GenerateT(patterns, Γo, τo, N)
}

Figure 5. The algorithm that generates all terms with a given type
τo and an environment Γo

The algorithm Synthesize represents the imperative description
of RCN, in Figure 4. It is the RCN version with a bound on the
number of terms, N. Moreover, it uses weights to steer the search
towards useful terms. We discuss this at the end of the section.
The backward search and search driven by weights make the new
algorithm effective, practical and interactive. Synthesize produces
the same set of solutions as RCN, given the same input, if we
remove bounds d and N or gradually increase them. Note that the
set of solutions might be infinite.

5.3 Exploration phase
The goal of Explore is to start from the desired succinct type and
environment and gradually explore the search space. We split the
algorithm into three key steps:

1. Type reachability. Given a succinct type t and Γ we want to
find all types reachable from t. We specify this request by t;

Γ
?.

We use the request to trigger the Match rule in Figure 3. By the
rule, types in set S are reachable from type t, A(t) = ∅, in Γ,
if (S→t) ∈ Γ holds. We denote this with reachability term,
t;

Γ
(S,Π) (later we explain what the set Π is).

2. Request propagation. Once we discover that types S are
reachable from t, we want to discover what types are reachable
from any type t′ ∈ S. Thus, we generate a new request t′ ;

Γ
?.

New requests are issued with the Prop rule. In other words, we
use the Prop rule to propagate the search.

3. Environment extension. However, t can be a function type,
i.e., t ≡ S′ → t′ and S′ 6= ∅. Thus, we introduce the Strip
rule that transforms a request (S → t) ;

Γ
? to a request t ;

Γ∪S
?.

Now, we can further use the request t ;
Γ∪S

? in the Match rule.

MATCH

t;
Γ

? (S→t) ∈ Γ A(t) = ∅

t;
Γ

(S, ∅)

PROP

t;
Γ

(S, ∅) t′ ∈ S

t′ ;
Γ

?
STRIP

(S → t) ;
Γ

?

t ;
Γ∪S

?

Figure 6. Type reachability rules.

A set of reachability terms keep the information about the explored
search space. Thus our goal is to derive all such terms starting from

fun Explore(Γ, S→t) := {
queue := {S→t;

Γ
?}

visited := ∅
space := ∅
while(queue 6= ∅) {

curr := queue.dequeue
visited := visited ∪ {curr}
t′ ;

Γ′
? := Strip(curr)

found := {Match(t′ ;
Γ′

?, S′→t′) | S′→t′ ∈ Γ′}
space := space ∪ found
newr := {Prop(tf ;

Γf

(Sf , ∅), t′) | tf ;
Γf

(Sf , ∅) ∈ found

and t′ ∈ Sf}
queue := queue ∪ (newr \ visited)
}
return space
}

Figure 7. The algorithm that explores the search space.

the desired type and the environment. We next give the detailed
description of the Explore algorithm.

To initiate the Explore algorithm in Figure 7 we create the
request (S→t) ;

Γ
?, where S→t is the desired type, and Γ is the

initial type environment. We put the request into a working queue.
In the loop we process one request at the time, until queue is empty.
First, we use Strip to obtain a new request t′ ;

Γ′
? with an extended

environment Γ′. Here, Strip is the function that implements the
corresponding rule, Strip in Figure 3. It takes request (S→t) ;

Γ
?

and returns new request t ;
Γ∪S

?. In the same fashion, we implement
the other two functions, Match that returns a reachability term, and
Prop that returns a request. Next, by applying Match to t′ ;

Γ′
? and

every type in Γ′ we find a set of reachability terms, found. We store
the terms in the set space. The space set represents the entire search
space discovered from the desired type and the initial environment.
Finally, we propagate the search by issuing newr requests using the
Prop function onto found. We update queue with these requests. We
additionally keep the set of all visited requests, to avoid cycles in
the exploration.

5.4 Pattern generation phase
In this phase we use the space explored by the Explore algorithm to
create patterns. We start from the reachability terms with inhabited
types, and use them to produce patterns and new inhabited types.
We repeat the process until no new types can be inhabited.

PROD

t;
Γ

(∅,Π)

Γ@Π : t

TRANSFER

t;
Γ

(S ∪ {S′ → t′},Π) t′ ;
Γ∪S′

(∅,Π′)

t;
Γ

(S,Π ∪ {S′ → t′})

Figure 8. Pattern synthesis rules.

Initially, we divide the search space, space, into two groups:
1) leaves that contains reachability terms in the form t;

Γ
(∅,Π),

i.e., reachability terms with inhabited types, and 2) others that
contains the remaining terms. The set Π collects succinct types
that have an inhabitant. It is initialized by Match to an empty set.
The Transfer rule, in Figure 8, turns t;

Γ
(S ∪ {S′→t′},Π) into

fun GenerateP(space) := {
patterns := ∅
visited := ∅
leaves := {x | x = t;

Γ
(∅, ∅) and x ∈ space}

others := space \ leaves
while (leaves 6= ∅) {
t;

Γ
(∅,Π) := leaves.dequeue

visited := visited ∪ {t;
Γ

(∅,Π)}
patterns := patterns ∪ {Prod(t;

Γ
(∅,Π))}

compatible := {x | x = t′ ;
Γ′

(S ∪ {S′ → t},Π′)

and Γ = Γ′ ∪ S′ and x ∈ others}
newt := {Transfer(x, t;

Γ
(∅,Π)) | x ∈ compatible}

newLeaves := {x | x = t′ ;
Γ′

(∅,Π′) and x ∈ newt}

others := (others \ compatible) ∪ (newt \ newLeaves)
leaves := leaves ∪ (newLeaves \ visited)
}
return patterns
}

Figure 9. The algorithm that generates patterns.

t;
Γ

(S,Π ∪ {S′→t′}) if {S′→t′} is inhabited. We use Π to produce
a pattern by the Prod rule.

In the loop we remove one term t;
Γ

(∅,Π) from leaves to gen-
erate: 1) a pattern Γ@Π : t by the Prod function, and 2) the newt
reachability terms by the Transfer function. To perform the latter
we first calculate the set of compatible terms. Those are the reacha-
bility terms in form t;

Γ
(S ∪ {S′ → t′},Π), such that Γ = Γ′ ∪ S′

holds. Every term in compatible can be resolved with t;
Γ

(∅,Π) by
the Transfer rule. The result is the set of newt terms. These reach-
ability terms can be split into two groups. The first group contains
terms of the form t′ ;

Γ′
(∅,Π′), that we add to leaves. The second

group contains the remaining terms and we add them to others. We
also keep the set of visited leaves in order to avoid cycles in gener-
ation.

5.5 Term generation phase
In Figure 10 we illustrate the algorithm that finds at most N lambda
expressions with the smallest weight. First, we introduce the notion
of holes to define the partial expressions, and later we describe the
algorithm GenerateT.

A typed hole []h : τ is a constant [] with a name h and a
type τ . Let V be a set of typed variables, and H a set of typed
holes. Partial typed expressions are constructed according to the
following syntax:

e ::= x | []h : τ | λx :τ.e | e e, where x ∈ V and []h : τ ∈ H
To derive the partial expressions in long normal form one can

use the same APP and ABS rules in Figure 2, where ei, i = [1..m]
and e are partial types expressions. Moreover, one can substitute
all holes in a partial expression and get a new partial or complete
expression, without holes. A hole []h : τ , in a judgment Γo `
[]h : τ , can be substituted only with a partial expression e : τ ,
where Γo ` e : τ .

We next describe the GenerateT algorithm. We start from the de-
sired type and original environment, follow patterns and gradually
create and unfold partial expressions. During the process we keep
partial expressions in the queue. Once a partial expression becomes
complete, we store it in the set of snippets.

We use a priority queue to process partial expressions. The ex-
pressions are sorted by the weight in ascending order. We initi-

ate the queue with []x : τinit, where τinit is the desired type. In
the loop we process one partial expression at a time. The loop
terminates either when the queue is empty or we find N expres-
sion. First, we remove the highest ranked partial expression, exprp,
from the priority queue. Then, we call the function findFirstHole,
that for a given judgment Γinit ` exprp finds (if it exists) a hole
[]h : τ1→· · ·→τn→v and its corresponding environment Γo. If
exprp has no holes, it is a complete lambda expression, i.e., a snip-
pet that we will output to a user. Hence, we append it to snippets. If
there is a hole in exprp we build all partial expressions that can sub-
stitute the hole. We extend the environment and use patterns with
the return type v to find declarations f . If the declaration has func-
tion type, we build the expression filling all arguments with fresh
holes. (Note that the new holes might be substituted in a later iter-
ation.) For each expression exprnewp, we build a substitution that
maps a name of the hole to the expressions. We apply the sub-
stitution to substitute the hole with the new expression. We use
the function w to calculate expression weights and store them in
the priority queue. The weight of a hole is equal to zero. We find

fun GenerateT(patterns, Γinit, τinit, N) := {
snippets := NIL
pq := PriorityQueue.empty
pq.put(0, []x : τinit)
while(pq.size > 0 and |snippets| < N){

exprp = pq.dequeue
findFirstHole(Γinit,exprp) match {
case None ⇒

snippets.append(exprp) //appends to the end
case Some((Γo, []h : τ1→· · ·→τn→v)) ⇒
S→v := σ(τ1→· · ·→τn→v)
Γ := σ(Γo)
//x1, . . . , xn are fresh
Γ′
o := Γo ∪ {x1 : τ1, . . . , xn : τn}

foreach ((Γ ∪ S)@S′ : v) ∈ patterns //S′ is binder
foreach (f : ρ1→· · ·→ρm→v) ∈ Select(Γ′

o, S′→v)
exprnewp :=
sub(exprp, h� (λx1 . . . xn.f []r1 : ρ1 . . . []rm : ρm))
//r1, . . . , rm are fresh names
pq.put(w(exprnewp), exprnewp)

}
}
return snippets
}

fun findFirstHole(Γo, exp):= exp match {
case []x : τ ⇒ Some((Γo, []x : τ))
case λx1 . . . xn.fe1 . . . em ⇒

Γ′
o := Γo ∪ {x1 : τ1, . . . , xn : τn} //x1, . . . , xn are fresh

for(i ∈ [1..m])
findFirstHole(Γ′

o, ei) match {
case Some(hole) ⇒ return Some(hole)
case Node ⇒
}

None
}

fun sub(expr1, y � expr2):= expr1 match {
case []x : τ ⇒ if (x = y) expr2 else expr1
case λx1 . . . xn.fe1 . . . em ⇒

λx1 . . . xn.f sub(e1, y � exp2) . . . sub(em, y � exp2)
}

Figure 10. A function that constructs the best N lambda terms in
long normal form.

the partial expressions that replace the hole using patterns. First
we calculate a succinct type S→v and environment Γ. We expand
the environment to Γ ∪ S and use it with type v to find all pat-

terns with form (Γ ∪ S)@S′ : v in the pattern set. When we find
all such sets S′ we use them to select all type variables in Γ′

o

whose type maps to a succinct type S′→v. Once we have such
a variable we use it to create the most general partial expression
λx1 . . . xn.f []r1 : ρ1 . . . []rm : ρm. Such an expression has holes
at the places of f’s arguments. In this way we gradually unfold a
partial expression until it becomes complete.

5.6 Responsiveness
We use first two phases to synthesize patterns starting from the de-
sired type and the initial environment. We referred to those phases
as a prover. To be interactive we allow a user to specify a time
limit for the prover. Due to time bound, we decide to interleave
the two phases, such that whenever Explore discovers a new leaf, it
immediately triggers GenerateP. Every time GenerateP is called it
uses all discovered reachability terms to generate as many new pat-
terns as possible. Moreover, to generate the best solutions, within a
given time, we use a priority queue in Explore instead of the regu-
lar queue. Requests in the priority queue are sorted by weights. A
weight of a request t;

Γ
? is equal to a weight of type t in the initial

environment. Additionally, we allow a user to specify a time limit
for GenerateT.

5.7 Optimizations
To efficiently find the compatible set in GenerateP, we create a
backward map that maps a term to its predecessor terms. Last
reachability term f that initiated creation of term, through propa-
gation, is the predecessor of term. We build the map in Explore,
that records all predecessors of a given term, by storing an entry
(term, predecessors). By using the map, compatible becomes the
predecessors set of t;

Γ
(∅,Π). This way we do not preform expen-

sive calculation of compatible. However, whenever a new term x is
generate by Transfer(y, z) in GenerateP, we need to update the map
by substituting every occurrence of y with x in the map. To speed
up this process, for every term in the map we keep the list of entries
where the term occurs.

6. Subtyping using Coercion Functions
We use a simple method of coercion functions [2, 17, 21] to extend
our approach to deal with subtyping. We found that this method
works well in practice. On the given set of basic types, we model
each subtyping relation v1 <: v2 by introducing into the environ-
ment a fresh coercion expression c12 : {v1} → v2. If there is an
expression e : τ , and e was generated using the coercion functions,
then while translating e into simply typed lambda terms, the coer-
cion is removed. Up to η-conversion, this approach generates all
terms of the desired type in a system with subtyping on primitive
types with the usual subtyping rules on function types.

In the standard lambda calculus there are three additional rules
to handle subtyping: transitivity (τ1 <: τ2 and τ2 <: τ3 imply
τ1 <: τ3), subsumption (if e : τ1 and τ1 <: τ2 then e : τ2), and
the cvariant rule (τ1 <: ρ1 and ρ2 <: τ2 imply ρ1 → ρ2 <: τ1 →
τ2). We proved that even with those new rules the complexity of
the problem does not change and the type inhabitation remains a
PSPACE-complete problem. If subtyping constraints are present,
then the coercion functions are used in the construction of succinct
patterns. However, in the RCN function the coercion functions are
omitted when deriving new lambda terms.

7. Evaluation of the Effectiveness of InSynth
This section discusses our implementation, a set of benchmarks we
used to evaluate InSynth, and the experimental results.

7.1 Implementation in Eclipse
We implemented InSynth as an Eclipse plugin that extends the code
completion feature. It enables developers to accomplish a complex
action with only a few keystrokes: declare a type of a term, invoke
InSynth, and select one of the suggested expressions.

InSynth provides its functionality in Eclipse as a contribution
to the standard Eclipse content assist framework and contributes its
results to the list of content assist proposals. These proposals can be
returned by invoking the content assist feature when Scala source
files are edited (usually with Ctrl + Space). If the code completion
is invoked at any valid program point in the source code, InSynth
attempts to synthesize and return code snippets of the desired type.
Only the top specified number of snippets are displayed as propos-
als in the content assist proposal list, in the order corresponding
to the weighted ranking. InSynth supports invocation at any loca-
tion immediately following declaration of a typed value, variable
or a method, i.e. in the place of its definition and also at the place
of method parameters, if condition expressions, and similar (where
the type can be inferred). InSynth uses the Scala presentation com-
piler to extract program declarations and imported API functions
visible at a given point. InSynth can be easily configured though
standard Eclipse preference pages, and the user can set maximum
execution time of the synthesis process, desired number of synthe-
sized solutions and code style of Scala snippets.

7.2 Creating Benchmarks
There is no standardized set of benchmarks for the problem that we
examine, so we constructed our own benchmark suite. We collected
examples primarily from http://www.java2s.com/. These ex-
amples illustrate correct usage of Java API functions and classes in
various scenarios. We manually translated the examples from Java
into equivalent Scala code. Since only single class imports are used
in the original examples, we generalized the import statements for
the benchmarks to include more declarations and thereby made the
synthesis problem more difficult by increasing the size of the search
space.

One idea of measuring the effectiveness of a synthesis tool is to
estimate its ability to reconstruct certain expressions from existing
code. We arbitrarily chose some expressions from the collected
examples, removed them and marked them as goal expressions
that needed to be synthesized (we replaced them with a fresh
value definition if the place of the expression was not valid for
InSynth invocation). The resulting benchmark is a partial program,
similar to a program sketch [23]. We measure whether InSynth can
reconstruct an expression equal to the one removed, modulo literal
constants (of integer, string, or boolean type). Our benchmark suite
is available for download from the InSynth web site.

7.3 Corpus for Computing Symbol Usage Frequencies
Our algorithm searches for typed terms that can be derived from
the initial environment and that minimize the weight function. To
compute initial declaration weights we follow the steps presented in
Section 4. The key step is to derive declarations frequencies. Hence,
we collected a code corpus which dictates those initial weights. The
corpus contains code statistics from 18 Java and Scala open-source
projects. Table 3 lists those projects together with their description.

One of the analyzed projects is the Scala compiler, which is
mainly written in the Scala language itself. In addition to the
projects listed in Table 3, we analyzed the Scala standard library,
which mainly consists of wrappers around Java API calls. We ex-
tracted the relevant information only about Java and Scala APIs,
and ignored information specific to the projects themselves. Over-
all, we extracted 7516 declarations and identified a total of 90422
uses of these declarations. 98% of declarations have less than 100

No weights No corpus All Provers
Benchmarks Size #Initial Rank Total Rank Total Rank Prove Recon Total Imogen fCube

1 AWTPermissionStringname 2/2 5615 >10 5157 1 101 1 8 125 133 127 20123
2 BufferedInputStreamFileInputStream 3/2 3364 >10 2235 1 45 1 7 46 53 44 5827
3 BufferedOutputStream 3/2 3367 >10 2009 1 18 1 7 11 19 44 5781
4 BufferedReaderFileReaderfileReader 4/2 3364 >10 2276 2 69 1 7 43 50 44 0176
5 BufferedReaderInputStreamReader 4/2 3364 >10 2481 2 66 1 7 42 49 44 0175
6 BufferedReaderReaderin 5/4 4094 >10 5185 >10 4760 6 7 237 244 61 0228
7 ByteArrayInputStreambytebuf 4/4 3366 >10 5146 3 94 >10 4 18 22 44 5836
8 ByteArrayOutputStreamintsize 2/2 3363 >10 2583 2 51 2 8 63 70 44 5204
9 DatagramSocket 1/1 3246 >10 5024 1 74 1 7 80 88 38 5555

10 DataInputStreamFileInput 3/2 3364 >10 2643 1 20 1 6 46 52 44 5791
11 DataOutputStreamFileOutput 3/2 3364 >10 5189 1 29 1 7 38 45 44 5839
12 DefaultBoundedRangeModel 1/1 6673 >10 3353 1 220 1 10 257 266 193 36337
13 DisplayModeintwidthintheightintbit 2/2 4999 >10 6116 1 136 1 6 147 154 99 10525
14 FileInputStreamFileDescriptorfdObj 2/2 3366 >10 3882 3 24 2 6 17 23 44 3929
15 FileInputStreamStringname 2/2 3363 >10 2870 1 125 1 9 100 109 44 4425
16 FileOutputStreamFilefile 2/2 3364 >10 4878 1 86 1 8 51 60 44 4415
17 FileReaderFilefile 2/2 3365 >10 3484 2 37 2 7 13 20 44 4495
18 FileStringname 2/2 3363 >10 3697 1 169 1 7 155 163 44 5859
19 FileWriterFilefile 2/2 3366 >10 4255 1 40 1 8 28 36 45 4515
20 FileWriterLPT1 2/2 3363 6 3884 1 139 1 7 89 96 44 4461
21 GridBagConstraints 1/1 8402 >10 3419 1 3241 1 19 323 342 290 0121
22 GridBagLayout 1/1 8401 >10 2 1 1 1 0 1 1 290 56553
23 GroupLayoutContainerhost 4/2 6436 >10 4055 1 24 1 10 26 36 190 29794
24 ImageIconStringfilename 2/2 8277 >10 3625 2 495 1 13 154 167 300 50576
25 InputStreamReaderInputStreamin 3/3 3363 >10 3558 8 90 4 7 177 184 44 4507
26 JButtonStringtext 2/2 6434 >10 3289 2 117 1 9 85 95 184 27828
27 JCheckBoxStringtext 2/2 8401 >10 3738 3 134 2 18 50 68 188 4946
28 JformattedTextFieldAbstractFormatter 3/2 10700 >10 3087 2 2048 4 21 101 122 520 99238
29 JFormattedTextFieldFormatterformatter 2/2 9783 >10 3404 2 67 2 15 85 100 419 74713
30 JTableObjectnameObjectdata 3/3 8280 >10 3676 2 109 2 13 129 142 300 46738
31 JTextAreaStringtext 2/2 6433 >10 2012 2 232 >10 9 293 302 183 29601
32 JToggleButtonStringtext 2/2 8277 >10 3171 2 177 2 12 123 135 299 5231
33 JTree 1/1 8278 2 3534 1 3162 1 16 2022 2039 298 52417
34 JViewport 1/1 8282 8 5017 1 20 8 12 7 19 298 22946
35 JWindow 1/1 6434 3 4274 1 296 1 10 425 434 194 2862
36 LineNumberReaderReaderin 5/4 3363 >10 2315 >10 3770 9 6 233 239 44 5876
37 ObjectInputStreamInputStreamin 3/2 3367 >10 3093 1 20 1 6 29 35 44 5849
38 ObjectOutputStreamOutputStreamout 3/2 3364 >10 4883 1 31 1 7 47 54 44 5438
39 PipedReaderPipedWritersrc 2/2 3364 >10 2762 2 54 2 8 60 68 44 262
40 PipedWriter 1/1 3359 >10 4801 1 107 1 6 133 139 44 5432
41 Pointintxinty 3/1 4997 >10 2068 5 133 2 6 96 103 101 8573
42 PrintStreamOutputStreamout 3/2 3365 >10 2100 6 16 1 7 20 27 44 5841
43 PrintWriterBufferedWriter 4/3 3365 >10 2521 4 135 4 8 36 44 44 448
44 SequenceInputStreamInputStreams 5/3 3365 >10 4777 2 35 2 8 20 28 44 5862
45 ServerSocketintport 2/2 4094 >10 2285 2 28 1 6 57 63 61 11123
46 StreamTokenizerFileReaderfileReader 3/2 3365 >10 2012 1 34 1 8 57 65 44 5782
47 StringReaderStrings 2/2 3363 >10 2006 1 35 1 6 37 43 45 5746
48 TimerintvalueActionListeneract 3/3 6665 >10 2051 1 123 1 10 189 199 186 34841
49 TransferHandlerStringproperty 2/2 8648 >10 3911 1 27 1 14 17 31 319 67997
50 URLStringspecthrows 3/3 4093 >10 3302 6 124 1 8 175 183 60 11197

Table 2. Results of measuring overall effectiveness. The first 4 columns denote the ordinal and name of a benchmark, size of the desired
snippet (in terms of number of declarations: with coercion function accounted/only visible) and the initial number of declarations seen at
the invocation point. The subsequent columns denote the rank at which the desired snippet was found and (averaged) execution times in
milliseconds for the algorithm with no weights, with weight but without use of input statistics, and with weights and input statistics (with
the distribution of execution time between the engine and reconstruction parts). The last two columns show execution time for checking
provability using the Imogen and fCube provers.

uses in the entire corpus, whereas the maximal number of occur-
rences of a single declaration is 5162 (for the symbol &&).

7.4 Platform for Experiments
We ran all experiments on a machine with a 3Ghz clock speed pro-
cessor and 8MB of cache. We imposed a 2GB limit for allowed
memory usage. Software configuration consisted of Ubuntu 12.04.1
LTS (64b) with Scala 2.9.3 (a nightly version), and Java(TM) Vir-
tual Machine 1.6.0 24. The reconstruction part of InSynth is imple-
mented sequentially and does not make use of multiple CPU cores.

7.5 Measuring Overall Effectiveness
In each benchmark, we invoked InSynth at the place where the goal
expression was missing. We parametrized InSynth with N=10 and

used a time limit of 0.5s seconds for prover (Section 5.6) and 7s for
the reconstruction. By using a time limit, our goal was to evaluate
the usability of InSynth in an interactive environment (which IDEs
usually are).

We ran InSynth on the set of 50 benchmarks. Results are shown
in Table 2. The Size column represents the size of the goal expres-
sion in terms of number of declarations in its structure. It is illus-
trated in the form c/nc where c is the size with coercion functions
and nc is the size without. Note that when c>nc holds, InSynth
needs to deal with subtyping to synthesize the goal expression. The
#Initial column represents the size of the initial environment, i.e.
the number of initial type declarations that InSynth extracts at a
given program point. The following columns are partitioned into
three groups, one for each variant of the synthesis algorithm: 1) the

Project Description
Akka Transactional actors
CCSTM Software transactional memory
GooChaSca Google Charts API for Scala
Kestrel Tiny queue system based on starling
LiftWeb Web framework
LiftTicket Issue ticket system
O/R Broker JDBC framework with support for externalized SQL
scala0.orm O/R mapping tool
ScalaCheck Unit test automation
Scala compiler Compiles Scala source to Java bytecode
Scala Migrations Database migrations
ScalaNLP Natural language processing
ScalaQuery Typesafe database query API
Scalaz ”Scala on steroidz” - scala extensions
simpledb-scala-binding Bindings for Amazon’s SimpleDB
smr Map Reduce implementation
Specs Behaviour Driven Development framework
Talking Puffin Twitter client

Table 3. Scala open-source projects used for the corpus extraction.

algorithm without weights (the No weights column), 2) the algo-
rithm with weights derived without the corpus (the No corpus col-
umn) and 3) finally, the full algorithm, with weights derived using
the corpus (the All column).

In all groups, Rank represents the rank of the goal expres-
sion in the resulting list, and Total represents the total execution
time of synthesis. The distribution of the execution time between
prover and the reconstruction is shown in columns Prove and Re-
con, respectively. The last column group gives execution times of
two state-of-the-art intuitionistic theorem provers (Imogen [19] and
fCube [9]) employed for checking provability of inhabitation prob-
lems for the benchmarks.

Table 2 shows the differences in both effectiveness and execu-
tion time between the variants of the algorithm.

First, the table shows that the algorithm without weights does
not perform well and finds the goal expressions in only 4 out of 50
cases and executes by more than an order of magnitude slower than
the other variants. This is due to the fact that without the utilization
of the weight function to guide the search, InSynth is driven into a
wrong direction toward less important solutions, whose ranks are
as low as the actual solutions.

Second, we can see that adding weights to terms helps the
search drastically and the algorithm without corpus fails to find
the goal expression in only 2 cases. Also, the running times are
decreased substantially. In 33 cases, this variant finds the solution
with the same rank as the variant which incorporates corpus, while
on 4 of them it finds the solution of a higher rank. This suggests that
in some cases, synthesis does not benefit from the derived corpus
– initial weights defined by it are not biased favorably and do not
direct the search toward the goal expression.

Third, we show the times for Imogen and fCube provers on
the same set of benchmarks. We can see that our prover is up to
2 orders of magnitude faster than Imogen and up to 4 orders than
fCube. Note that reconstruction of terms in Imogen was limited
to 10 seconds and Imogen failed to reconstruct a proof within that
time limit in all cases.

In the case of the full algorithm, the results show that the
desired expressions appear in the top 10 suggested snippets in 48
benchmarks (96%). They appear as the top snippet (with rank 1) in
32 benchmarks (64%). Note that our corpus (Section 7.3) is derived
from a source code base that is disjoint (and somewhat different
in nature) from the one used for benchmarks. This suggests that
even a knowledge corpus derived from unrelated code increases the
effectiveness of the synthesis process; a specialized corpus would
probably further increase the quality of results.

In summary, the expected snippets were found among the top
10 solutions in many benchmarks. Weights play an important role
in finding and ranking those snippets high in a short period of time
(on average around just 145ms). Finally, our prover outperforms
two state of the art provers Imogen and fCube. These results sug-
gest that InSynth is effective in quickly finding (i.e. synthesizing)
desired expressions at various places in source code.

8. Related Work
Several tools including Prospector [18], XSnippet [22], Strathcona
[13], PARSEWeb [27] and SNIFF [4] that generate or search for
relevant code examples have been proposed. In contrast to all these
tools we support expressions with higher order functions. Addition-
ally, we synthesize snippets using all visible methods in a context,
whereas the other existing tools build or present them only if they
exist in a corpus. Prospector, Strathcona and PARSEWeb do not
incorporate the extracted examples into the current program con-
text; this requires additional effort on the part of the programmer.
Moreover, Prospector does not solve queries with multiple argu-
ment methods unless the user initiates multiple queries. In contrast,
we generate full expressions using just a single query. We could not
effectively compare InSynth with those tools, since unfortunately,
the authors did not report exact running times.

We next provide more detailed descriptions for some of the
tools, and we compare their functionality to InSynth. InSynth is
similar in operation to Eclipse content assist proposals [26] and it
implements the same behaviour. More advanced solutions appeared
recently, such as [3], that proposes declarations, and the Eclipse
code recommenders [8], that suggests declarations and code tem-
plates. Both systems use API declaration call statistics from the ex-
isting code examples in order to offer suggestions to the developer
with appropriate statistical confidence value. InSynth is fundamen-
tally different from these approaches (it even subsumes them) and
can synthesize even code fragments that never previously occurred
in code.

Prospector [18] uses a type graph and searches for the short-
est path from a receiver type, typein, to the desire type, typeout.
The nodes of the graph are monomorphic types, and the edges
are the names of the methods. The nodes are connected based on
the method signature. Prospector also encodes subtypes and down-
casts into the graph. The query is formulated through typein and
typeout. The solution is a chain of method calls that starts at typein
and ends at typeout. Prospector ranks solutions by the length, pre-
ferring shorter solutions. In contrast, we find solutions that have
minimal weights. This potentially enables us to get solutions that
have better quality, since the shortest solution may not be the most
relevant. Furthermore, in order to fill in the method parameters, a
user needs to initiate multiple queries in Prospector. In InSynth this
is done automatically. Prospector uses a corpus for down-casting,
whereas we use it to guide the search and rank the solutions. More-
over, Prospector has no knowledge of what methods are used most
frequently. Unfortunately, we could not compare our implementa-
tion with Prospector, because it was not publicly available. XSnip-
pet [22] offers a range of queries from generalized to specialized.
The tool uses them to extract Java code from the sample reposi-
tory. XSnippet ranks solutions based on their length, frequency, and
context-sensitive as well as context-independent heuristics. In order
to narrow the search the tool uses the parental structure of the class
where the query is initiated to compare it with the parents of the
classes in the corpus. The returned examples are not adjusted auto-
matically into a context—the user needs to do this manually. Simi-
lar to Prospector the user needs to initiate additional queries to fill
in the method parameters. In Strathcona [13], a query based on the
structure of the code under development is automatically extracted.
One cannot explicitly specify the desired type. Thus, the returned

set of examples is often irrelevant. Moreover, in contrast to InSynth,
those examples can not be fitted into the code without additional in-
terventions. PARSEWeb [27] uses the Google code search engine to
get relevant code examples. The solutions are ranked by length and
frequency. In InSynth the length of a returned snippet also plays
an important role in ranking the snippets but InSynth also has an
additional component by taking into account also the proximity of
derived snippets and the point where InSynth was invoked. The
main idea behind the SNIFF [4] tool is to use natural language to
search for code examples. The authors collected the corpus of ex-
amples and annotated them with keywords, and attached them to
corresponding method calls in the examples. The keywords are col-
lected from the available API documentation. InSynth is based on
a logical formalism, so it can overcome the gap between program-
ming languages and natural language.

The synthesized code in our approach is extracted from the
proof derivation. Similar ideas have been exploited in the context
of sophisticated dependently typed languages and proof assistants
[1]. Our goal is to apply it to simpler scenarios, where proposi-
tions are only partial specifications of the code, as in the current
programming practice. Agda is a dependently typed programming
language and proof assistant. Using Agda’s Emacs interface, pro-
grams can be developed incrementally, leaving parts of the program
unfinished. By type checking the unfinished program, the program-
mer can get useful information on how to fill in the missing parts.
The Emacs interface also provides syntax highlighting and code
navigation facilities. However, because it is a new language and
lacks large examples, it is difficult to evaluate this functionality on
larger numbers of declarations.

There are several tools for the Haskell API search. The Hoogle
[14] search engine searches for a single function that has either
a given type or a given name in Haskell, but it does not return
a composed expression of the given type. The Hayoo [12] search
engine does not use types for searching functions: its search is
based on function names. The main difference between Djinn [25]
and our system is that Djinn generates a Haskell expression of a
given type, but unlike our system it does not use weights to guide
the algorithm and rank solutions. Recently we have witnessed a
renewed interest in semi-automated code completion [20]. The tool
[20] generates partial expressions to help a programmer write code
more easily. While their tool helps to guess the method name based
on the given arguments, or it suggests arguments based on the
method name, we generate complete expressions based only on
the type constraints. In addition, our approach also supports higher
order functions, and the returned code snippets can be arbitrarily
nested and complex: there is no bound on the number and depth of
arguments. This allows us to automatically synthesize larger pieces
of code in practice, as our evaluation shows. In that sense, our result
is a step further from simple completion to synthesis.

The use of type constraints was explored in interactive theorem
provers, as well as in synthesis of code fragments. SearchIsos [5]
uses type constraints to search for lemmas in Coq, but it does not
use weights to guide the algorithm and rank the solutions. Hav-
ing the type constraints, a natural step towards the construction of
proofs is the use of the Curry-Howard isomorphism. The drawback
of this approach is the lack of a mechanism that would automati-
cally enumerate all the proofs. By representing proofs using graphs,
the problem of their enumeration was shown to be theoretically
solvable [29], but there is a large gap between a theoretical result
and an effective tool. Furthermore, InSynth can not only enumerate
terms but also rank them and return a desired number of best-ranked
ones.

Having a witness term that a type is inhabited is a vital ingredi-
ent of our tool, so one could think of InSynth as a prover for propo-
sitional intuitionistic logic (with substantial additional functional-

ity). Among recent modern provers are Imogen [19] and fCube [9].
These tools can reason about more expressive fragments of logic:
they support not only implication but also intuitionistic counter-
parts for other propositional operators such as ∨,⇒,⇔, and Imo-
gen also supports first-order and not only propositional fragment.
Our results on fairly large benchmarks suggests that InSynth is
faster for our purpose. This is not entirely surprising because these
tools are not necessarily optimized for the task that we aim to solve
(looking for shallow proofs from many assumptions), and often do
not have efficient representation of large initial environments. The
main purpose of our comparison is to show that our technique is
no worse than the existing ones for our purpose, even when used to
merely check the existence of proofs. What is more important than
performance is that InSynth produces not only one proof, but a rep-
resentation of all proofs, along with their ranking. This additional
functionality of our algorithm is essential for the intended applica-
tion: using type inhabitation as a generalization of code completion.

For a given type InSynth produces a finite representation of all
the type inhabitants. In general, if an expression is an inhabitant
of the given type, there is a derivation that proves that fact. Us-
ing Curry-Howard isomorphism for each proof derivation there is
a lambda term representing it. The problem of enumerating all the
proofs for a given formula is an important research topic, since it
can be also used to answer other problems like provability or defin-
ability. We keep the system of patterns to represent all the type in-
habitants, achieving this way finite representation of a possibly infi-
nite set of the proofs. In [7] the authors used a semi-grammatically
description of all proof-terms for minimal predicate logic and a
positive sequent calculus. The use of grammars is an alternative to
our use of graphs as the representation for all solutions; we there-
fore expect that grammars could similarly be used as the starting
point for a practical system such as ours.

9. Conclusions
We have presented the design and implementation of a code com-
pletion inspired by complete implementation of type inhabitation
for the simply typed lambda calculus. Our algorithm uses succinct
types, an efficient representation for types, terms, and environments
that takes into account that the order of assumptions is unimpor-
tant. Our approach generates a representation of all solutions (a set
of pattens), from which it can extract any desired number of solu-
tions.

To further increase the usefulness of generated results, we in-
troduce the ability to assign weights to terms and types. The re-
sulting algorithm performs search for expressions of a given type
in a type environment while minimizing the weight, and preserves
the completeness. The presence of weights increases the quality of
the generated results. To compute weights we use the proximity to
the declaration point as well as weights mined from a corpus. We
have deployed the algorithm in an IDE for Scala. Our evaluation
on synthesis problems constructed from API usage indicate that
the technique is practical and that several technical ingredients had
to come together to make it powerful enough to work in practice.
Our tool and additional evaluation details are publicly available.

Our experience suggests that the idea of computing type inhab-
itats using succinct types and weights is useful by itself. Moreover,
our subsequent exploration suggests that these techniques can also
serve as the initial phase of semantic-based synthesis [16]. The idea
is to generate a stream of type-correct solutions and then filter it
to contain only expressions that meet given specifications, such as
postconditions (or, in the special case, input/output examples).

Note that the approach based on the techniques we presented
can also generate programs with various control patterns, be-
cause conditionals, loops, and recursion schemas can themselves be
viewed as higher-order functions. Although we believe the current

results to be a good starting point for such tasks, further techniques
may be needed to control larger search spaces for more complex
code correctness criteria and larger expected code sizes.

Acknowledgments
We thank the anonymous reviewers of PLDI 2013 for useful feed-
back. We are grateful to Iulian Dragos and the Scala IDE team
for the collaboration on integrating InSynth into Scala IDE. We
thank Martin Odersky, Aleksandar Prokopec, and Sean McLaugh-
lin for useful discussions. Tihomir Gvero is supported by the Eu-
ropean Research Council (ERC) Project “Implicit Programming”,
http://lara.epfl.ch/w/impro. Ivan Kuraj was supported by a
Google Summer of Code project.

References
[1] A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda - a

functional language with dependent types. In TPHOLs, 2009.
[2] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov.

Inheritance as implicit coercion. Inf. Comput., 93:172–221, July
1991. ISSN 0890-5401. doi: 10.1016/0890-5401(91)90055-7.

[3] M. Bruch, M. Monperrus, and M. Mezini. Learning from examples to
improve code completion systems. In ESEC/SIGSOFT FSE, pages
213–222, 2009.

[4] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A search engine for
java using free-form queries. FASE ’09, pages 385–400, 2009.

[5] D. Delahaye. Information retrieval in a Coq proof library using type
isomorphisms. In TYPES, pages 131–147, 1999.

[6] G. Dowek. Higher-order unification and matching. Handbook of
automated reasoning, II:1009–1062, 2001.

[7] G. Dowek and Y. Jiang. Enumerating proofs of positive formulae.
Comput. J., 52(7):799–807, Oct. 2009. ISSN 0010-4620.

[8] Eclipse Code Recommenders.
http://www.eclipse.org/recommenders/.

[9] M. Ferrari, C. Fiorentini, and G. Fiorino. fCube: An efficient prover
for intuitionistic propositional logic. In LPAR (Yogyakarta), 2010.

[10] T. Gvero, V. Kuncak, and R. Piskac. Interactive synthesis of code
snippets (tool demonstration). In 23rd Int. Conf. Computer Aided
Verification, July 14-20, 2011.

[11] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. On complete
completion using types and weights. Technical report, EPFL,
December 2012.

[12] Hayoo! API Search.
http://holumbus.fh-wedel.de/hayoo/hayoo.html.

[13] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. ICSE ’05, pages 117–125, 2005.

[14] Hoogle API Search. http://www.haskell.org/hoogle/.
[15] IntelliJ IDEA website, 2011. URL

http://www.jetbrains.com/idea/.
[16] I. Kuraj. Interactive code generation. Master’s thesis, EPFL,

February 2013.
[17] Z. Luo. Coercions in a polymorphic type system. Mathematical

Structures in Computer Science, 18(4):729–751, 2008.
[18] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jungloid mining:

helping to navigate the api jungle. In PLDI, 2005.
[19] S. McLaughlin and F. Pfenning. Efficient intuitionistic theorem

proving with the polarized inverse method. In CADE, 2009.
[20] D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed

completion of partial expressions. In PLDI, pages 275–286, 2012.
[21] J. C. Reynolds. Using category theory to design implicit conversions

and generic operators. In Semantics-Directed Compiler Generation,
pages 211–258, 1980.

[22] N. Sahavechaphan and K. Claypool. Xsnippet: mining for sample
code. In OOPSLA, 2006. ISBN 1-59593-348-4.

[23] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodı́k, V. A. Saraswat,
and S. A. Seshia. Sketching stencils. In PLDI, 2007.

[24] R. Statman. Intuitionistic propositional logic is polynomial-space
complete. Theoretical Computer Science, 9(1):67 – 72, 1979.

[25] The Djinn Theorem Prover.
http://www.augustsson.net/Darcs/Djinn/.

[26] The Eclipse Foundation. http://www.eclipse.org/.
[27] S. Thummalapenta and T. Xie. PARSEWeb: a programmer assistant

for reusing open source code on the web. In ASE, 2007.
[28] P. Urzyczyn. Inhabitation in typed lambda-calculi (a syntactic

approach). In TLCA, 1997.
[29] J. B. Wells and B. Yakobowski. Graph-based proof counting and

enumeration with applications for program fragment synthesis. In
LOPSTR, pages 262–277, 2004.

